Title:
|
On general two-scale convergence and its application to the characterization of $G$-limits (English) |
Author:
|
Silfver, Jeanette |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
52 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
285-302 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We characterize some $G$-limits using two-scale techniques and investigate a method to detect deviations from the arithmetic mean in the obtained $G$-limit provided no periodicity assumptions are involved. We also prove some results on the properties of generalized two-scale convergence. (English) |
Keyword:
|
homogenization |
Keyword:
|
$G$-convergence |
Keyword:
|
two-scale convergence |
MSC:
|
35B27 |
MSC:
|
35J25 |
MSC:
|
49J45 |
idZBL:
|
Zbl 1164.35318 |
idMR:
|
MR2324728 |
DOI:
|
10.1007/s10492-007-0015-4 |
. |
Date available:
|
2009-09-22T18:29:52Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134676 |
. |
Reference:
|
[1] G. Allaire, M. Briane: Multiscale convergence and reiterated homogenization.Proc. R. Soc. Edinb., Sect. A 126 (1996), 297–342. MR 1386865 |
Reference:
|
[2] G. Allaire: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482–1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084 |
Reference:
|
[3] G. Allaire: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences 146.Springer-Verlag, New York, 2002. MR 1859696, 10.1007/978-1-4684-9286-6 |
Reference:
|
[4] H. W. Alt: Lineare Funktionalanalysis.Springer-Verlag, Berlin, 1985. Zbl 0577.46001 |
Reference:
|
[5] A. Bensoussan, J. -L. Lions, G. Papanicolau: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications.North-Holland, Amsterdam-New York-Oxford, 1978. MR 0503330 |
Reference:
|
[6] J. Casado-Diaz, I. Gayte: A general compactness result and its application to the two-scale convergence of almost periodic functions.C. R. Math. Acad. Sci. Paris, Ser. 1 323 (1996), 329–334. MR 1408763 |
Reference:
|
[7] D. Cioranescu, A. Damlamian, and G. Griso: Periodic unfolding and homogenization.C. R. Math. Acad. Sci. Paris, Ser. 1 335 (2002), 99–104. MR 1921004, 10.1016/S1631-073X(02)02429-9 |
Reference:
|
[8] D. Cioranescu, P. Donato: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications.Oxford University Press, Oxford, 1999. MR 1765047 |
Reference:
|
[9] V. Chiadò Piat, A. Defranceschi: Homogenization of monotone operators.Nonlinear Anal., Theory Methods Appl. 14 (1990), 717–732. MR 1049117, 10.1016/0362-546X(90)90102-M |
Reference:
|
[10] V. Chiadò Piat, G. Dal Maso, and A. Defranceschi: $G$-convergence of monotone operators.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 123–160. MR 1065871, 10.1016/S0294-1449(16)30298-0 |
Reference:
|
[11] L. C. Evans: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS Regional Conference Series in Mathematics, Vol. 74.1990. MR 1034481 |
Reference:
|
[12] A. Holmbom, J. Silfver, N. Svanstedt, and N. Wellander: On two-scale convergence and related sequential compactness topics.Appl. Math. 51 (2006), 247–262. MR 2228665, 10.1007/s10492-006-0014-x |
Reference:
|
[13] D. Lukkassen, G. Nguetseng, and P. Wall: Two-scale convergence.Int. J. Pure Appl. Math. 2 (2002), 35–86. MR 1912819 |
Reference:
|
[14] M. L. Mascarenhas, A.-M. Toader: Scale convergence in homogenization.Numer. Funct. Anal. Optimization. 22 (2001), 127–158. MR 1841866, 10.1081/NFA-100103791 |
Reference:
|
[15] F. Murat: $H$-convergence.Séminarie d’Analyse Fonctionnelle et Numérique, 1977–1978, Université d’Alger, Alger, 1978. |
Reference:
|
[16] F. Murat: Compacité par compensation.Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser. 5 (1978), 489–507. Zbl 0399.46022, MR 0506997 |
Reference:
|
[17] F. Murat: Compacité par compensation II.In: Proc. Int. Meet. “Recent Methods in Nonlinear Analysis”, Pitagora, Bologna, , , 1979, pp. 245–256. Zbl 0427.35008, MR 0533170 |
Reference:
|
[18] L. Nechvátal: Alternative approaches to the two-scale convergence.Appl. Math. 49 (2004), 97–110. Zbl 1099.35012, MR 2043076, 10.1023/B:APOM.0000027218.04167.9b |
Reference:
|
[19] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608–623. Zbl 0688.35007, MR 0990867, 10.1137/0520043 |
Reference:
|
[20] G. Nguetseng: Homogenization structures and applications I.Z. Anal. Anwend. 22 (2003), 73–107. Zbl 1045.46031, MR 1962077 |
Reference:
|
[21] J. Silfver: Sequential convergence for functions and operators.Licentiate Thesis 10, Mid Sweden University, Östersund, 2004. |
Reference:
|
[22] S. Spagnolo: Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore.Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat, III. Ser. 21 (1967), 657–699. (Italian) Zbl 0153.42103, MR 0225015 |
Reference:
|
[23] S. Spagnolo: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche.Ann. Sculoa Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 571–597. (Italian) MR 0240443 |
Reference:
|
[24] S. Spagnolo: Convergence in energy for elliptic operators.In: Proc. 3rd Symp. Numer. Solut. Partial Differ. Equat., College Park, 1975, Academic Press, San Diego, 1976, pp. 469–498. Zbl 0347.65034, MR 0477444 |
Reference:
|
[25] L. Tartar: Homogénéisation et compacité par compensation. Cours Peccot, Collège de France, Paris, March 1977.Unpublished, partly written in [15]. |
Reference:
|
[26] L. Tartar: Compensated compactness and applications to partial differential equations.Nonlinear Analysis and Mechanics, Heriott-Watt Symposium. Res. Notes Math. 39, Vol. 4, R. J. Knops (ed.), Pitman, Boston-London, 1979, pp. 136–212. Zbl 0437.35004, MR 0584398 |
Reference:
|
[27] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik: Homogenization of Differential Operators and Variational Problems.Springer-Verlag, Berlin, 1994. MR 1329546 |
. |