Previous |  Up |  Next

Article

Title: Homogenization of some parabolic operators with several time scales (English)
Author: Flodén, Liselott
Author: Olsson, Marianne
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 5
Year: 2007
Pages: 431-446
Summary lang: English
.
Category: math
.
Summary: The main focus in this paper is on homogenization of the parabolic problem $ \partial _{t}u^{\varepsilon }-\nabla \cdot ( a( {x}/{\varepsilon },{t}/{\varepsilon }, {t}/{\varepsilon ^{r}})\nabla u^{\varepsilon }) =f$. Under certain assumptions on $a$, there exists a $G$-limit $b$, which we characterize by means of multiscale techniques for $r>0$, $r\ne 1$. Also, an interpretation of asymptotic expansions in the context of two-scale convergence is made. (English)
Keyword: homogenization
Keyword: $G$-convergence
Keyword: multiscale convergence
Keyword: parabolic
Keyword: asymptotic expansion
MSC: 35B27
MSC: 35K20
idZBL: Zbl 1164.35315
idMR: MR2342599
DOI: 10.1007/s10492-007-0025-2
.
Date available: 2009-09-22T18:31:02Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134687
.
Reference: [1] G.  Allaire: Homogenization and two-scale convergence.SIAM J.  Math. Anal. 23 (1992), 1482–1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [2] G. Allaire, M. Briane: Multiscale convergence and reiterated homogenization.Proc. R.  Soc. Edinburgh, Sect.  A 126 (1996), 297–342. MR 1386865
Reference: [3] S. Brahim-Otsmane, G. A. Francfort, and F.  Murat: Correctors for the homogenization of the heat and wave equations.J.  Math. Pures Appl. 71 (1992), 197–231. MR 1172450
Reference: [4] A.  Bensoussan, J.-L.  Lions, and G.  Papanicolaou: Asymptotic Analysis for Periodic Structures. Stud. Math. Appl.North-Holland, Amsterdam-New York-Oxford, 1978. MR 0503330
Reference: [5] D. Cioranescu, P.  Donato: An Introduction to Homogenization. Oxford Lecture Ser. Math. Appl.Oxford University Press, Oxford, 1999. MR 1765047
Reference: [6] F. Colombini, S. Spagnolo: Sur la convergence de solutions d’équations paraboliques.J.  Math. Pures Appl. 56 (1977), 263–305. (French) MR 0603300
Reference: [7] A.  Dall’Aglio, F.  Murat: A corrector result for $H$-converging parabolic problems with time-dependent coefficients.Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser. 25 (1997), 329–373. MR 1655521
Reference: [8] A.  Holmbom: Homogenization of parabolic equations. An alternative approach and some corrector-type results.Appl. Math. 42 (1997), 321–343. Zbl 0898.35008, MR 1467553, 10.1023/A:1023049608047
Reference: [9] A.  Holmbom, N.  Svanstedt, N.  Wellander: Multiscale convergence and reiterated homogenization for parabolic problems.Appl. Math. 50 (2005), 131–151. MR 2125155, 10.1007/s10492-005-0009-z
Reference: [10] D.  Lukkassen, G.  Nguetseng, P.  Wall: Two-scale convergence.Int. J.  Pure Appl. Math. 2 (2002), 35–86. MR 1912819
Reference: [11] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization.SIAM J.  Math. Anal. 20 (1989), 608–623. Zbl 0688.35007, MR 0990867, 10.1137/0520043
Reference: [12] A. Pankov: $G$-convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications.Kluwer, Dordrecht, 1997. MR 1482803
Reference: [13] A. Profeti, B. Terreni: Uniformità per una convergenza di operatori parabolichi nel caso dell’omogenizzazione.Boll. Unione Math. Ital. Ser.  B 16 (1979), 826–841. (Italian) MR 0553800
Reference: [14] S.  Spagnolo: Convergence of parabolic equations.Boll. Unione Math. Ital.  Ser. B 14 (1977), 547–568. Zbl 0356.35042, MR 0460889
Reference: [15] N. Svanstedt: $G$-convergence of parabolic operators.Nonlinear Anal. Theory Methods Appl. 36 (1999), 807–843. Zbl 0933.35020, MR 1682689, 10.1016/S0362-546X(97)00532-4
Reference: [16] N. Svanstedt: Correctors for the homogenization of monotone parabolic operators.J.  Nonlinear Math. Phys. 7 (2000), 268–283. Zbl 0954.35023, MR 1777302, 10.2991/jnmp.2000.7.3.2
.

Files

Files Size Format View
AplMat_52-2007-5_5.pdf 516.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo