Previous |  Up |  Next

Article

Title: A priori estimates and solvability of a non-resonant generalized multi-point boundary value problem of mixed Dirichlet-Neumann-Dirichlet type involving a $p$-Laplacian type operator (English)
Author: Gupta, Chaitan P.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 5
Year: 2007
Pages: 417-430
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the problem of existence of a solution for a non-resonant, non-linear generalized multi-point boundary value problem on the interval $[0,1]$. The existence of a solution is obtained using topological degree and some a priori estimates for functions satisfying the boundary conditions specified in the problem. (English)
Keyword: generalized multi-point boundary value problems
Keyword: $p$-Laplace type operator
Keyword: non-resonance
Keyword: a priori estimates
Keyword: topological degree
MSC: 34B10
MSC: 34B15
MSC: 34L30
MSC: 47N20
idZBL: Zbl 1164.34325
idMR: MR2342598
DOI: 10.1007/s10492-007-0024-3
.
Date available: 2009-09-22T18:30:56Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134686
.
Reference: [1] Cuan-zhi Bai, Jin-xuan Fang: Existence of multiple positive solutions for nonlinear $m$-point boundary-value problems.Appl. Math. Comput. 140 (2003), 297–305. MR 1953901, 10.1016/S0096-3003(02)00227-8
Reference: [2] A. V.  Bitsadze: On the theory of nonlocal boundary value problems.Sov. Math. Dokl. 30 (1984), 8–10. Zbl 0586.30036, MR 0757061
Reference: [3] A. V.  Bitsadze: On a class of conditionally solvable nonlocal boundary value problems for harmonic functions.Sov. Math. Dokl. 31 (1985), 91–94. Zbl 0607.30039
Reference: [4] A. V.  Bitsadze, A. A.  Samarskiĭ: On some simple generalizations of linear elliptic boundary problems.Sov. Math. Dokl. 10 (1969), 398–400.
Reference: [5] W.  Feng, J. R. L.  Webb: Solvability of three point boundary value problems at resonance.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3227–3238. MR 1603039, 10.1016/S0362-546X(96)00118-6
Reference: [6] W. Feng, J. R. L.  Webb: Solvability of $m$-point boundary value problems with nonlinear growth.J.  Math. Anal. Appl. 212 (1997), 467–480. MR 1464891, 10.1006/jmaa.1997.5520
Reference: [7] M.  Garcia-Huidobro, C. P.  Gupta, and R. Manásevich: Solvability for a nonlinear three-point boundary value problem with $p$-Laplacian-like operator at resonance.Abstr. Appl. Anal. 6 (2001), 191–213. MR 1866004, 10.1155/S1085337501000550
Reference: [8] M.  Garcia-Huidobro, C. P.  Gupta, and R. Manásevich: An $m$-point boundary value problem of Neumann type for a $p$-Laplacian like operator.Nonlinear Anal., Theory Methods Appl. 56A (2004), 1071–1089. MR 2038737
Reference: [9] M.  Garcia-Huidobro, C. P.  Gupta, and R. Manásevich: A Dirichelet-Neumann $m$-point  BVP with a $p$-Laplacian-like operator.Nonlinear Anal., Theory Methods Appl. 62 (2005), 1067–1089. MR 2152998, 10.1016/j.na.2005.04.020
Reference: [10] M.  Garcia-Huidobro, R.  Manásevich: A three point boundary value problem containing the operator $-(\phi (u^{\prime }))^{\prime } $.Discrete Contin. Dyn. Syst. Suppl. (2003), 313–319. MR 2018130
Reference: [11] C. P.  Gupta: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation.J.  Math. Anal. Appl. 168 (1992), 540–551. Zbl 0763.34009, MR 1176010, 10.1016/0022-247X(92)90179-H
Reference: [12] C. P.  Gupta: A note on a second order three-point boundary value problem.J.  Math. Anal. Appl. 186 (1994), 277–281. Zbl 0805.34017, MR 1290657, 10.1006/jmaa.1994.1299
Reference: [13] C. P.  Gupta: A second order m-point boundary value problem at resonance.Nonlinear Anal., Theory Methods Appl. 24 (1995), 1483–1489. Zbl 0839.34027, MR 1327929, 10.1016/0362-546X(94)00204-U
Reference: [14] C. P. Gupta: Existence theorems for a second order $m$-point boundary value problem at resonance.Int. J.  Math. Math. Sci. 18 (1995), 705–710. Zbl 0839.34027, MR 1347059, 10.1155/S0161171295000901
Reference: [15] C. P.  Gupta: Solvability of a multi-point boundary value problem at resonance.Result. Math. 28 (1995), 270–276. Zbl 0843.34023, MR 1356893, 10.1007/BF03322257
Reference: [16] C. P.  Gupta: A generalized multi-point boundary value problem for second order ordinary differential equations.Appl. Math. Comput. 89 (1998), 133–146. Zbl 0910.34032, MR 1491699, 10.1016/S0096-3003(97)81653-0
Reference: [17] C. P.  Gupta, S. K. Ntouyas, and P. Ch. Tsamatos: On an $m$-point boundary value problem for second order ordinary differential equations.Nonlinear Anal., Theory Methods Appl. 23 (1994), 1427–1436. MR 1306681, 10.1016/0362-546X(94)90137-6
Reference: [18] C. P.  Gupta, S. Ntouyas, and P. Ch. Tsamatos: Solvability of an $m$-point boundary value problem for second order ordinary differential equations.J.  Math. Anal. Appl. 189 (1995), 575–584. MR 1312062, 10.1006/jmaa.1995.1036
Reference: [19] C. P.  Gupta, S. K. Ntouyas, and P. Ch. Tsamatos: Existence results for $m$-point boundary value problems.Differ. Equ. Dyn. Syst. 2 (1994), 289–298. MR 1386275
Reference: [20] C. P. Gupta, S. K.  Ntouyas, and P. Ch. Tsamatos: On the solvability of some multi-point boundary value problems.Appl. Math. 41 (1996), 1–17. MR 1365136
Reference: [21] C. P.  Gupta, S. K. Ntouyas, and P. Ch. Tsamatos: Existence results for multi-point boundary value problems for second order ordinary differential equations.Bull. Greek Math. Soc. 43 (2000), 105–123. MR 1846952
Reference: [22] C. P.  Gupta, S.  Trofimchuk: Solvability of a multi-point boundary value problem of Neumann type.Abstr. Appl. Anal. 4 (1999), 71–81. MR 1810319, 10.1155/S1085337599000093
Reference: [23] V. A. Il’in, E. I. Moiseev: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and difference aspects.Differ. Equ. 23 (1987), 803–810.
Reference: [24] V. A. Il’in, E. I. Moiseev: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator.Differ. Equ. 23 (1987), 979–987.
Reference: [25] B.  Liu: Solvability of multi-point boundary value problem at resonance. IV.Appl. Math. Comput. 143 (2003), 275–299. Zbl 1071.34014, MR 1981696, 10.1016/S0096-3003(02)00361-2
Reference: [26] Y. Liu, W.  Ge: Multiple positive solutions to a three-point boundary value problem with $p$-Laplacian.J.  Math. Anal. Appl. 277 (2003), 293–302. Zbl 1026.34028, MR 1954477, 10.1016/S0022-247X(02)00557-7
Reference: [27] N. G.  Lloyd: Degree Theory.Cambridge University Press, Cambridge, 1978. Zbl 0367.47001, MR 0493564
Reference: [28] J.  Mawhin: Topological degree methods in nonlinear boundary value problems.In: NSF-CBMS Regional Conference Series in Math. No.  40, Americal Mathematical Society, Providence, 1979. Zbl 0414.34025, MR 0525202
Reference: [29] J.  Mawhin: A simple approach to Brouwer degree based on differential forms.Adv. Nonlinear Stud. 4 (2004), 501–514. Zbl 1082.47052, MR 2100911, 10.1515/ans-2004-0409
Reference: [30] S.  Sedziwy: Multipoint boundary value problems for a second order differential equations.J.  Math. Anal. Appl. 236 (1999), 384–398. MR 1704590, 10.1006/jmaa.1999.6441
Reference: [31] H. B.  Thompson, C.  Tisdell: Three-point boundary value problems for second-order ordinary differential equations.Math. Comput. Modelling 34 (2001), 311–318. MR 1835829, 10.1016/S0895-7177(01)00063-2
.

Files

Files Size Format View
AplMat_52-2007-5_4.pdf 281.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo