Title:
|
A priori estimates and solvability of a non-resonant generalized multi-point boundary value problem of mixed Dirichlet-Neumann-Dirichlet type involving a $p$-Laplacian type operator (English) |
Author:
|
Gupta, Chaitan P. |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
52 |
Issue:
|
5 |
Year:
|
2007 |
Pages:
|
417-430 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is devoted to the problem of existence of a solution for a non-resonant, non-linear generalized multi-point boundary value problem on the interval $[0,1]$. The existence of a solution is obtained using topological degree and some a priori estimates for functions satisfying the boundary conditions specified in the problem. (English) |
Keyword:
|
generalized multi-point boundary value problems |
Keyword:
|
$p$-Laplace type operator |
Keyword:
|
non-resonance |
Keyword:
|
a priori estimates |
Keyword:
|
topological degree |
MSC:
|
34B10 |
MSC:
|
34B15 |
MSC:
|
34L30 |
MSC:
|
47N20 |
idZBL:
|
Zbl 1164.34325 |
idMR:
|
MR2342598 |
DOI:
|
10.1007/s10492-007-0024-3 |
. |
Date available:
|
2009-09-22T18:30:56Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134686 |
. |
Reference:
|
[1] Cuan-zhi Bai, Jin-xuan Fang: Existence of multiple positive solutions for nonlinear $m$-point boundary-value problems.Appl. Math. Comput. 140 (2003), 297–305. MR 1953901, 10.1016/S0096-3003(02)00227-8 |
Reference:
|
[2] A. V. Bitsadze: On the theory of nonlocal boundary value problems.Sov. Math. Dokl. 30 (1984), 8–10. Zbl 0586.30036, MR 0757061 |
Reference:
|
[3] A. V. Bitsadze: On a class of conditionally solvable nonlocal boundary value problems for harmonic functions.Sov. Math. Dokl. 31 (1985), 91–94. Zbl 0607.30039 |
Reference:
|
[4] A. V. Bitsadze, A. A. Samarskiĭ: On some simple generalizations of linear elliptic boundary problems.Sov. Math. Dokl. 10 (1969), 398–400. |
Reference:
|
[5] W. Feng, J. R. L. Webb: Solvability of three point boundary value problems at resonance.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3227–3238. MR 1603039, 10.1016/S0362-546X(96)00118-6 |
Reference:
|
[6] W. Feng, J. R. L. Webb: Solvability of $m$-point boundary value problems with nonlinear growth.J. Math. Anal. Appl. 212 (1997), 467–480. MR 1464891, 10.1006/jmaa.1997.5520 |
Reference:
|
[7] M. Garcia-Huidobro, C. P. Gupta, and R. Manásevich: Solvability for a nonlinear three-point boundary value problem with $p$-Laplacian-like operator at resonance.Abstr. Appl. Anal. 6 (2001), 191–213. MR 1866004, 10.1155/S1085337501000550 |
Reference:
|
[8] M. Garcia-Huidobro, C. P. Gupta, and R. Manásevich: An $m$-point boundary value problem of Neumann type for a $p$-Laplacian like operator.Nonlinear Anal., Theory Methods Appl. 56A (2004), 1071–1089. MR 2038737 |
Reference:
|
[9] M. Garcia-Huidobro, C. P. Gupta, and R. Manásevich: A Dirichelet-Neumann $m$-point BVP with a $p$-Laplacian-like operator.Nonlinear Anal., Theory Methods Appl. 62 (2005), 1067–1089. MR 2152998, 10.1016/j.na.2005.04.020 |
Reference:
|
[10] M. Garcia-Huidobro, R. Manásevich: A three point boundary value problem containing the operator $-(\phi (u^{\prime }))^{\prime } $.Discrete Contin. Dyn. Syst. Suppl. (2003), 313–319. MR 2018130 |
Reference:
|
[11] C. P. Gupta: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation.J. Math. Anal. Appl. 168 (1992), 540–551. Zbl 0763.34009, MR 1176010, 10.1016/0022-247X(92)90179-H |
Reference:
|
[12] C. P. Gupta: A note on a second order three-point boundary value problem.J. Math. Anal. Appl. 186 (1994), 277–281. Zbl 0805.34017, MR 1290657, 10.1006/jmaa.1994.1299 |
Reference:
|
[13] C. P. Gupta: A second order m-point boundary value problem at resonance.Nonlinear Anal., Theory Methods Appl. 24 (1995), 1483–1489. Zbl 0839.34027, MR 1327929, 10.1016/0362-546X(94)00204-U |
Reference:
|
[14] C. P. Gupta: Existence theorems for a second order $m$-point boundary value problem at resonance.Int. J. Math. Math. Sci. 18 (1995), 705–710. Zbl 0839.34027, MR 1347059, 10.1155/S0161171295000901 |
Reference:
|
[15] C. P. Gupta: Solvability of a multi-point boundary value problem at resonance.Result. Math. 28 (1995), 270–276. Zbl 0843.34023, MR 1356893, 10.1007/BF03322257 |
Reference:
|
[16] C. P. Gupta: A generalized multi-point boundary value problem for second order ordinary differential equations.Appl. Math. Comput. 89 (1998), 133–146. Zbl 0910.34032, MR 1491699, 10.1016/S0096-3003(97)81653-0 |
Reference:
|
[17] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos: On an $m$-point boundary value problem for second order ordinary differential equations.Nonlinear Anal., Theory Methods Appl. 23 (1994), 1427–1436. MR 1306681, 10.1016/0362-546X(94)90137-6 |
Reference:
|
[18] C. P. Gupta, S. Ntouyas, and P. Ch. Tsamatos: Solvability of an $m$-point boundary value problem for second order ordinary differential equations.J. Math. Anal. Appl. 189 (1995), 575–584. MR 1312062, 10.1006/jmaa.1995.1036 |
Reference:
|
[19] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos: Existence results for $m$-point boundary value problems.Differ. Equ. Dyn. Syst. 2 (1994), 289–298. MR 1386275 |
Reference:
|
[20] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos: On the solvability of some multi-point boundary value problems.Appl. Math. 41 (1996), 1–17. MR 1365136 |
Reference:
|
[21] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos: Existence results for multi-point boundary value problems for second order ordinary differential equations.Bull. Greek Math. Soc. 43 (2000), 105–123. MR 1846952 |
Reference:
|
[22] C. P. Gupta, S. Trofimchuk: Solvability of a multi-point boundary value problem of Neumann type.Abstr. Appl. Anal. 4 (1999), 71–81. MR 1810319, 10.1155/S1085337599000093 |
Reference:
|
[23] V. A. Il’in, E. I. Moiseev: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and difference aspects.Differ. Equ. 23 (1987), 803–810. |
Reference:
|
[24] V. A. Il’in, E. I. Moiseev: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator.Differ. Equ. 23 (1987), 979–987. |
Reference:
|
[25] B. Liu: Solvability of multi-point boundary value problem at resonance. IV.Appl. Math. Comput. 143 (2003), 275–299. Zbl 1071.34014, MR 1981696, 10.1016/S0096-3003(02)00361-2 |
Reference:
|
[26] Y. Liu, W. Ge: Multiple positive solutions to a three-point boundary value problem with $p$-Laplacian.J. Math. Anal. Appl. 277 (2003), 293–302. Zbl 1026.34028, MR 1954477, 10.1016/S0022-247X(02)00557-7 |
Reference:
|
[27] N. G. Lloyd: Degree Theory.Cambridge University Press, Cambridge, 1978. Zbl 0367.47001, MR 0493564 |
Reference:
|
[28] J. Mawhin: Topological degree methods in nonlinear boundary value problems.In: NSF-CBMS Regional Conference Series in Math. No. 40, Americal Mathematical Society, Providence, 1979. Zbl 0414.34025, MR 0525202 |
Reference:
|
[29] J. Mawhin: A simple approach to Brouwer degree based on differential forms.Adv. Nonlinear Stud. 4 (2004), 501–514. Zbl 1082.47052, MR 2100911, 10.1515/ans-2004-0409 |
Reference:
|
[30] S. Sedziwy: Multipoint boundary value problems for a second order differential equations.J. Math. Anal. Appl. 236 (1999), 384–398. MR 1704590, 10.1006/jmaa.1999.6441 |
Reference:
|
[31] H. B. Thompson, C. Tisdell: Three-point boundary value problems for second-order ordinary differential equations.Math. Comput. Modelling 34 (2001), 311–318. MR 1835829, 10.1016/S0895-7177(01)00063-2 |
. |