Previous |  Up |  Next

Article

Title: Calculation of the magnetic field due to a bioelectric current dipole in an ellipsoid (English)
Author: Irimia, Andrei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 2
Year: 2008
Pages: 131-142
Summary lang: English
.
Category: math
.
Summary: The bioelectric current dipole model is important both theoretically and computationally in the study of electrical activity in the brain and stomach due to the resemblance of the shape of these two organs to an ellipsoid. To calculate the magnetic field ${\mathbf B}$ due to a dipole in an ellipsoid, one must evaluate truncated series expansions involving ellipsoidal harmonics $\mathbb{E}_n^m$, which are products of Lamé functions. In this article, we extend a strictly analytic model (G. Dassios and F. Kariotou, J. Math. Phys. 44 (2003), 220–241), where ${\mathbf B}$ was computed from an ellipsoidal harmonic expansion of order 2. The present derivations show how the field can be evaluated to arbitrary order using numerical procedures for evaluating the roots of Lamé polynomials of degree 5 or higher. This can be accomplished using an optimization technique for solving nonlinear systems of equations, which allows one to acquire an understanding of the truncation error associated with the harmonic series expansion used for the calculation. (English)
Keyword: magnetic field
Keyword: dipole
Keyword: ellipsoid
MSC: 78A25
MSC: 92C50
idZBL: Zbl 1187.78010
idMR: MR2399902
DOI: 10.1007/s10492-008-0016-y
.
Date available: 2009-09-22T18:32:35Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134702
.
Reference: [1] S. Baillet, J. C.  Mosher, R. M.  Leahy: Electromagnetic brain mapping.IEEE Signal Proc. Mag. 18 (2001), 14–30. 10.1109/79.962275
Reference: [2] W. E. Byerly: An Elementary Treatise on Fourier Series and Spherical, Cylindrical and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics.Ginn, Boston, 1893.
Reference: [3] M. Camilleri, W. L. Hasler, H. P. Parkman, E. M. M. Quigley, E.  Soffer: Measurement of gastrointestinal motility in the GI laboratory.Gastroenterol 115 (1998), 747–762. 10.1016/S0016-5085(98)70155-6
Reference: [4] D.  Cohen: Magnetoencephalography—evidence of magnetic fields produced by alpha-rhytmic currents.Science 161 (1968), 784–786. 10.1126/science.161.3843.784
Reference: [5] D.  Cohen, E. A  Edelsack, J. E  Zimmerman: Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer.Appl. Phys. Lett. 16 (1970), 278–280. 10.1063/1.1653195
Reference: [6] D.  Cohen: Magnetoencephalography—detection of brain’s electrical activity using a superconducting magnetometer.Science 175 (1972), 664–666. 10.1126/science.175.4022.664
Reference: [7] A. Corrias, M. L. Buist: A quantitative model of gastric smooth muscle cellular activation.Physiol. Meas. 25 (2007), 849–861.
Reference: [8] G.  Dassios, F.  Kariotou: Magnetoencephalography in ellipsoidal geometry.J.  Math. Phys. 44 (2003), 220–241. MR 1946700, 10.1063/1.1522135
Reference: [9] B. O.  Familoni, T. L.  Abell, K. L.  Bowes: Model of gastric electrical activity in health and disease.IEEE Trans. Biomed. Eng. 42 (1995), 647–657. 10.1109/10.391163
Reference: [10] W. E.  Featherstone, M. C.  Dentith: A geodetic approach to gravity data reduction for geophysics.Comput. Geosci. 23 (1997), 1063–1070. 10.1016/S0098-3004(97)00092-7
Reference: [11] M. S.  Hämäläinen, J.  Sarvas: Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields.Phys. Med. Biol. 32 (1987), 91–97. 10.1088/0031-9155/32/1/014
Reference: [12] M. S.  Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, O. Lounasmaa: Magnetoencephalography—theory, instrumentation and applications to noninvasive studies of the working human brain.Rev. Mod. Phys. 65 (1993), 413–497. 10.1103/RevModPhys.65.413
Reference: [13] E. W. Hobson: The Theory of Spherical and Ellipsoidal Harmonics.Cambridge University Press, Cambridge, 1931. Zbl 0004.21001
Reference: [14] A. Irimia, L. A. Bradshaw: Theoretical ellipsoidal model of gastric electrical control activity propagation.Phys. Rev.  E 68 (2003), .
Reference: [15] A. Irimia: Electric field and potential calculation for a bioelectric current dipole in an ellipsoid.J.  Phys.  A, Math. Gen. 38 (2005), 8123–8138. Zbl 1073.92025, MR 2169333, 10.1088/0305-4470/38/37/012
Reference: [16] A. Irimia: Ellipsiodal electrogastrographic forward modelling.Phys. Med. Biol. 50 (2005), 4429–4444. 10.1088/0031-9155/50/18/012
Reference: [17] F.  Kariotou: Electroencephalography in ellipsoidal geometry.J.  Math. Anal. Appl. 290 (2004), 324–342. Zbl 1037.92021, MR 2032245, 10.1016/j.jmaa.2003.09.066
Reference: [18] J.  Malmivuo, R. Plonsey: Bioelectromagnetism.Oxford University Press, New York, 1995.
Reference: [19] M. P.  Mintchev, K. L.  Bowes: Conoidal dipole model of electrical-field produced by the human stomach.Med. Biol. Eng. Comput. 33 (1995), 179–184. 10.1007/BF02523038
Reference: [20] M. P.  Mintchev, S. J.  Otto, K. L. Bowes: Electrogastrography can recognize gastric electrical uncoupling in dogs.Gastroenterol 112 (1997), 2006–2011. 10.1053/gast.1997.v112.pm9178693
Reference: [21] N.  Mirizzi, R.  Stella, U.  Scafoglieri: A model of extracellular waveshape of the gastric electrical activity.Med. Biol. Eng. Comput. 23 (1985), 33–37. 10.1007/BF02444024
Reference: [22] N.  Mirizzi, R.  Stella, U.  Scafoglieri: Model to simulate the gastric electrical control and response activity on the stomach wall and on the abdominal surface.Med. Biol. Eng. Comput. 24 (1986), 157–163. 10.1007/BF02443929
Reference: [23] Y. C. Okada, M.  Lauritzen, C.  Nicholson: MEG source models and physiology.Phys. Med. Biol. 32 (1987), 43–51. 10.1088/0031-9155/32/1/007
Reference: [24] J W.  Phillips, R. M.  Leahy, J. C.  Mosher, B.  Timsari: Imaging neural activity using MEG and EEG.IEEE Eng. Med. Biol. Mag. 16 (1997), 34–42. 10.1109/51.585515
Reference: [25] S. Ritter: The nullfield method for the ellipsoidal Stokes problem.J. Geod. 72 (1998), 101–106. Zbl 0999.86004
Reference: [26] G. Romain, J. P.  Barriot: Ellipsoidal harmonic expansions of the gravitational potential: theory and applications.Celest. Mech. Dyn. Astr. 79 (2001), 235–275. MR 1857572, 10.1023/A:1017555515763
Reference: [27] E. B.  Saff, A. D. Snider: Fundamentals of Complex Analysis with Applications to Engineering and Science, third edition.Prentice Hall, Upper Saddle River, 2003.
Reference: [28] J.  Sarvas: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem.Phys. Med. Biol. 32 (1987), 11–22. 10.1088/0031-9155/32/1/004
Reference: [29] A.  Sommerfeld: Electrodynamics.Academic Press, New York, 1952. Zbl 0047.43904
.

Files

Files Size Format View
AplMat_53-2008-2_4.pdf 293.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo