Previous |  Up |  Next

Article

Title: Multiscale stochastic homogenization of convection-diffusion equations (English)
Author: Svanstedt, Nils
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 2
Year: 2008
Pages: 143-155
Summary lang: English
.
Category: math
.
Summary: Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form ${\partial u^\omega _{\varepsilon }}/{\partial t} +{1}/{\epsilon _3}\,\mathcal C\bigl (T_3({x}/{\varepsilon _3}) \omega _3\bigr )\cdot \nabla u^\omega _{\varepsilon }- \div \bigl ( \alpha \bigl (T_1({x}/{\varepsilon _1})\omega _1, T_2({x}/{\varepsilon _2})\omega _2 ,t\bigr ) \nabla u^\omega _{\varepsilon }\bigr )=f$. It is shown, under certain structure assumptions on the random vector field ${\mathcal C}(\omega _3)$ and the random map $\alpha (\omega _1,\omega _2,t)$, that the sequence $\lbrace u^\omega _\epsilon \rbrace $ of solutions converges in the sense of G-convergence of parabolic operators to the solution $u$ of the homogenized problem ${\partial u}/{\partial t} - \div ( \mathcal B(t)\nabla u ) = f$. (English)
Keyword: multiscale
Keyword: stochastic
Keyword: homogenization
Keyword: convection-diffusion
MSC: 35B27
MSC: 35B40
MSC: 35K57
MSC: 60H15
MSC: 76M35
MSC: 76M50
idZBL: Zbl 1199.35017
idMR: MR2399903
DOI: 10.1007/s10492-008-0017-x
.
Date available: 2009-09-22T18:32:41Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134703
.
Reference: [1] A.  Bensoussan, J.-L.  Lions, G.  Papanicolaou: Asymptotic Analysis for Periodic Structures.North-Holland, Amsterdam-New York-Oxford, 1978. MR 0503330
Reference: [2] V.  Chiadò Piat, G.  Dal Maso, A.  Defranceschi: G-convergence of monotone operators.Ann. Inst. H.  Poincaré, Anal. Non Linéare 7 (1990), 123–160. MR 1065871, 10.1016/S0294-1449(16)30298-0
Reference: [3] V.  Chiadò Piat, A.  Defranceschi: Homogenization of monotone operators.Nonlinear Anal., Theory Methods Appl. 14 (1990), 717–732. MR 1049117, 10.1016/0362-546X(90)90102-M
Reference: [4] Y.  Efendiev, A.  Pankov: Numerical homogenization of nonlinear random parabolic operators.Multiscale Model. Simul. 2 (2004), 237–268. MR 2043587, 10.1137/030600266
Reference: [5] L. C.  Evans: Partial Differential Equations. AMS Graduate Studies in Mathematics, Vol.  19.AMS, Providence, 1998. MR 1625845
Reference: [6] A.  Fannjiang, G.  Papanicolaou: Convection enhanced diffusion for periodic flows.SIAM J.  Appl. Math. 54 (1994), 333–408. MR 1265233, 10.1137/S0036139992236785
Reference: [7] J.-L.  Lions, D.  Lukkassen, L-E.  Persson, P.  Wall: Reiterated homogenization of nonlinear monotone operators.Chin. Ann. Math., Ser.  B 22 (2001), 1–12. MR 1823125, 10.1142/S0252959901000024
Reference: [8] S.  Spagnolo: Convergence of parabolic equations.Boll. Unione Math. Ital. 14-B (1977), 547–568. Zbl 0356.35042, MR 0460889
Reference: [9] N.  Svanstedt: G-convergence and homogenization of sequences of linear and monlinear partial differential operators.PhD. Thesis, Luleå University, 1992.
Reference: [10] N.  Svanstedt: G-convergence of parabolic operators.Nonlinear Anal., Theory Methods Appl. 36 (1999), 807–842. Zbl 0933.35020, MR 1682689, 10.1016/S0362-546X(97)00532-4
Reference: [11] N.  Svanstedt: Multiscale stochastic homogenization of monotone operators.Netw. Heterog. Media 2 (2007), 181–192. MR 2291817, 10.3934/nhm.2007.2.181
Reference: [12] E.  Zeidler: Nonlinear Functional Analysis and its Applications  2 B.Springer, Berlin-New York, 1985. MR 0768749
.

Files

Files Size Format View
AplMat_53-2008-2_5.pdf 291.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo