Title:
|
Multiscale stochastic homogenization of convection-diffusion equations (English) |
Author:
|
Svanstedt, Nils |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
143-155 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form ${\partial u^\omega _{\varepsilon }}/{\partial t} +{1}/{\epsilon _3}\,\mathcal C\bigl (T_3({x}/{\varepsilon _3}) \omega _3\bigr )\cdot \nabla u^\omega _{\varepsilon }- \div \bigl ( \alpha \bigl (T_1({x}/{\varepsilon _1})\omega _1, T_2({x}/{\varepsilon _2})\omega _2 ,t\bigr ) \nabla u^\omega _{\varepsilon }\bigr )=f$. It is shown, under certain structure assumptions on the random vector field ${\mathcal C}(\omega _3)$ and the random map $\alpha (\omega _1,\omega _2,t)$, that the sequence $\lbrace u^\omega _\epsilon \rbrace $ of solutions converges in the sense of G-convergence of parabolic operators to the solution $u$ of the homogenized problem ${\partial u}/{\partial t} - \div ( \mathcal B(t)\nabla u ) = f$. (English) |
Keyword:
|
multiscale |
Keyword:
|
stochastic |
Keyword:
|
homogenization |
Keyword:
|
convection-diffusion |
MSC:
|
35B27 |
MSC:
|
35B40 |
MSC:
|
35K57 |
MSC:
|
60H15 |
MSC:
|
76M35 |
MSC:
|
76M50 |
idZBL:
|
Zbl 1199.35017 |
idMR:
|
MR2399903 |
DOI:
|
10.1007/s10492-008-0017-x |
. |
Date available:
|
2009-09-22T18:32:41Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134703 |
. |
Reference:
|
[1] A. Bensoussan, J.-L. Lions, G. Papanicolaou: Asymptotic Analysis for Periodic Structures.North-Holland, Amsterdam-New York-Oxford, 1978. MR 0503330 |
Reference:
|
[2] V. Chiadò Piat, G. Dal Maso, A. Defranceschi: G-convergence of monotone operators.Ann. Inst. H. Poincaré, Anal. Non Linéare 7 (1990), 123–160. MR 1065871, 10.1016/S0294-1449(16)30298-0 |
Reference:
|
[3] V. Chiadò Piat, A. Defranceschi: Homogenization of monotone operators.Nonlinear Anal., Theory Methods Appl. 14 (1990), 717–732. MR 1049117, 10.1016/0362-546X(90)90102-M |
Reference:
|
[4] Y. Efendiev, A. Pankov: Numerical homogenization of nonlinear random parabolic operators.Multiscale Model. Simul. 2 (2004), 237–268. MR 2043587, 10.1137/030600266 |
Reference:
|
[5] L. C. Evans: Partial Differential Equations. AMS Graduate Studies in Mathematics, Vol. 19.AMS, Providence, 1998. MR 1625845 |
Reference:
|
[6] A. Fannjiang, G. Papanicolaou: Convection enhanced diffusion for periodic flows.SIAM J. Appl. Math. 54 (1994), 333–408. MR 1265233, 10.1137/S0036139992236785 |
Reference:
|
[7] J.-L. Lions, D. Lukkassen, L-E. Persson, P. Wall: Reiterated homogenization of nonlinear monotone operators.Chin. Ann. Math., Ser. B 22 (2001), 1–12. MR 1823125, 10.1142/S0252959901000024 |
Reference:
|
[8] S. Spagnolo: Convergence of parabolic equations.Boll. Unione Math. Ital. 14-B (1977), 547–568. Zbl 0356.35042, MR 0460889 |
Reference:
|
[9] N. Svanstedt: G-convergence and homogenization of sequences of linear and monlinear partial differential operators.PhD. Thesis, Luleå University, 1992. |
Reference:
|
[10] N. Svanstedt: G-convergence of parabolic operators.Nonlinear Anal., Theory Methods Appl. 36 (1999), 807–842. Zbl 0933.35020, MR 1682689, 10.1016/S0362-546X(97)00532-4 |
Reference:
|
[11] N. Svanstedt: Multiscale stochastic homogenization of monotone operators.Netw. Heterog. Media 2 (2007), 181–192. MR 2291817, 10.3934/nhm.2007.2.181 |
Reference:
|
[12] E. Zeidler: Nonlinear Functional Analysis and its Applications 2 B.Springer, Berlin-New York, 1985. MR 0768749 |
. |