Previous |  Up |  Next

Article

Title: Estimating the fuzzy inequality associated with a fuzzy random variable in random samplings from finite populations (English)
Author: López-García, Hortensia
Author: Gil, María Angeles
Author: Corral, Norberto
Author: López, María Teresa
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 2
Year: 1998
Pages: [149]-161
Summary lang: English
.
Category: math
.
Summary: In a recent paper we have introduced the fuzzy hyperbolic inequality index, to quantify the inequality associated with a fuzzy random variable in a finite population. In previous papers, we have also proven that the classical hyperbolic inequality index associated with real-valued random variables in finite populations can be unbiasedly estimated in random samplings. The aim of this paper is to analyze the problem of estimating the population fuzzy hyperbolic index associated with a fuzzy random variable in random samplings from finite populations. This analysis will lead us to conclude that an unbiased (up to additive equivalences) estimator of the population fuzzy hyperbolic inequality index can be constructed on the basis of the sample index and the expected value of the values fuzzy hyperbolic inequality in the sample. (English)
Keyword: fuzzy random variable
Keyword: estimation
Keyword: fuzzy hyperbolic inequality
MSC: 04A72
MSC: 62A86
MSC: 62D05
MSC: 62D99
idZBL: Zbl 1274.62096
idMR: MR1621507
.
Date available: 2009-09-24T19:14:40Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135194
.
Reference: [1] Bourguignon F.: Decomposable income inequality measures.Econometrica 47 (1979), 901–920 Zbl 0424.90013, MR 0537636, 10.2307/1914138
Reference: [2] Caso C., Gil M. A.: Estimating income inequality in the stratified sampling from complete data.Part I: The unbiased estimation and applications. Kybernetika 25 (1989), 298–311 Zbl 0682.62087, MR 1015034
Reference: [3] Caso C., Gil M. A.: Estimating income inequality in the stratified sampling from complete data.Part II: The asymptotic behaviour and the choice of sample size. Kybernetika 25 (1989), 312–319 Zbl 0682.62087, MR 1015035
Reference: [4] Corral N., Gil M. A., López-García H.: The fuzzy hyperbolic inequality index of fuzzy random variables in finite populations.Mathware $\&$ Soft Computing 3 (1996), 329–339 Zbl 0859.60004, MR 1489755
Reference: [5] Cox E.: The Fuzzy Systems Handbook.Academic Press, Cambridge 1994 Zbl 0847.68111
Reference: [6] Gastwirth J. L., Nayak T. K., Krieger A. M.: Large sample theory for the bounds on the Gini and related indices of inequality estimated from grouped data.J. Business Econom. Statist. 4 (1986), 269–273
Reference: [7] Gil M. A., Gil P.: On some information measures of degree ${\beta = 2}$; Estimation in simple–stage cluster sampling.Statist. Probab. Lett. 8 (1989), 157–162 Zbl 0677.62008, MR 1017883, 10.1016/0167-7152(89)90009-6
Reference: [8] Gil M. A., Corral N., Casals M. R.: The likelihood ratio test for goodness of fit with fuzzy experimental observations.IEEE Trans. Systems Man Cybernet. 19 (1989), 771–779 10.1109/21.35340
Reference: [9] Gil M. A., López–Díaz M.: Fundamentals and Bayesian analyses of decision problems with fuzzy–valued utilities.Internat. J. Approx. Reason. 15 (1996), 203–224 Zbl 0949.91504, MR 1415767, 10.1016/S0888-613X(96)00073-4
Reference: [10] Gil M. A., Martínez I.: On the asymptotic optimum allocation in estimating inequality from complete data.Kybernetika 28 (1992), 325–332 Zbl 0771.62083, MR 1183623
Reference: [11] Gil M. A., Pérez R., Gil P.: A family of measures of uncertainty involving utilities: definitions, properties, applications and statistical inferences.Metrika 36 (1989), 129–147 MR 1024002, 10.1007/BF02614085
Reference: [12] Jang J.-S. R., Gulley N.: Fuzzy Logic Toolbox for Use with MATLAB.The Math Works Inc., Natick–Massachussets 1995
Reference: [13] Kaufmann A., Gupta M. M.: Introduction to Fuzzy Arithmetic.Van Nostrand Reinhold Co., New York 1985 Zbl 0754.26012, MR 0796665
Reference: [14] Mareš M.: Addition of rational fuzzy quantities: Disjunction–conjunction approach.Kybernetika 25 (1989), 104–116 MR 0995953
Reference: [15] Mareš M.: Algebraic equivalences over fuzzy quantities.Kybernetika 25 (1992), 121–132 MR 1227746
Reference: [16] Mareš M.: Computation over Fuzzy Quantities.CRC Press, Boca Raton 1994 Zbl 0859.94035, MR 1327525
Reference: [17] Puri M. L., Ralescu D. A.: Fuzzy random variables.J. Math. Anal. Appl. 114 (1986), 409–422 Zbl 0605.60038, MR 0833596, 10.1016/0022-247X(86)90093-4
Reference: [18] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning.Inform. Sci. Part 1, 8 (1975), 199–249; Part 2, 8 (1975), 301–353; Part 3, 9 (1975), 43–80 Zbl 0404.68075, MR 0386371, 10.1016/0020-0255(75)90017-1
.

Files

Files Size Format View
Kybernetika_34-1998-2_2.pdf 1.656Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo