Previous |  Up |  Next

Article

Title: Finite-to-one fuzzy maps and fuzzy perfect maps (English)
Author: Lupiáñez, Francisco Gallego
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 2
Year: 1998
Pages: [163]-169
Summary lang: English
.
Category: math
.
Summary: In this paper we define, for fuzzy topology, notions corresponding to finite-to-one and $k$-to-one maps. We study the relationship between these new fuzzy maps and various kinds of fuzzy perfect maps. Also, we show the invariance and the inverse inveriance under the various kinds of fuzzy perfect maps (and the finite-to-one fuzzy maps), of different properties of fuzzy topological spaces. (English)
Keyword: fuzzy topology
Keyword: fuzzy perfect maps
MSC: 03E72
MSC: 04A72
MSC: 54A40
idZBL: Zbl 1274.54037
idMR: MR1621508
.
Date available: 2009-09-24T19:14:47Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135195
.
Reference: [1] Arhangel’skii A. V.: A criterion for the existence of a bicompact element in a continuous decomposition.A theorem on the invariance of weight under open–closed finite–to–one mappings. Soviet Math. Dokl. 7 (1966), 249–253
Reference: [2] Arhangel’skii A. V.: A theorem of the metrizability of the inverse image of a metric space under an open–closed finite–to–one mapping.Example and unsolved problems. Soviet Math. Dokl. 7 (1966), 1258–1262 MR 0206899
Reference: [3] Chaber J.: Open finite–to–one images of metric spaces.Topology Appl. 14 (1982), 241–246 Zbl 0505.54013, MR 0675587, 10.1016/0166-8641(82)90053-0
Reference: [4] Chang C. L.: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182–190 Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7
Reference: [5] Christoph F. T.: Quotient fuzzy topology and local compactness, J.Math. Anal. Appl. 57 (1977), 497–504 MR 0440480, 10.1016/0022-247X(77)90242-6
Reference: [6] Čoban M. M.: Open finite–to–one mappings.Soviet Math. Dokl. 8 (1967), 603–605
Reference: [7] El–Monsef M. E. A., Zeyada F. M., El–Deeb S. N., Hanafy I. M.: Good extensions of paracompactness.Math. Japon. 37 (1992), 195–200 Zbl 0772.54007, MR 1148533
Reference: [8] Ghosh B.: Directed family of fuzzy sets and fuzzy perfect maps.Fuzzy Sets and Systems 75 (1995), 93–101 Zbl 0863.54003, MR 1351595, 10.1016/0165-0114(94)00357-D
Reference: [9] Gittings R. F.: Finite–to–one open maps of generalized metric spaces.Pacific J. Math. 59 (1975), 33–41 Zbl 0296.54011, MR 0385787, 10.2140/pjm.1975.59.33
Reference: [10] Gittings R. F.: Open mapping theory.In: Set–theoretic Topology (G. M. Reed, ed.), Academic Press, New York 1977, pp. 141–191 Zbl 0401.54008, MR 0482628
Reference: [11] Kohli J. K.: Finite–to–one maps and open extensions of maps.Proc. Amer. Math. Soc. 48 (1975), 464–468 Zbl 0323.54007, MR 0370472, 10.1090/S0002-9939-1975-0370472-5
Reference: [12] Lowen R.: Fuzzy topological spaces and fuzzy compactness.J. Math. Anal. Appl. 56 (1976), 621–633 Zbl 0342.54003, MR 0440482, 10.1016/0022-247X(76)90029-9
Reference: [13] Lowen R.: A comparison of different compactness notions in fuzzy topological spaces.J. Math. Anal. Appl. 64 (1978), 446–454 Zbl 0381.54004, MR 0497443, 10.1016/0022-247X(78)90052-5
Reference: [14] Luo M. K.: Paracompactness in fuzzy topological spaces.J. Math. Anal. Appl. 130 (1988), 55–77 Zbl 0642.54006, MR 0926828, 10.1016/0022-247X(88)90386-1
Reference: [15] Lupiáñez F. G.: Fuzzy perfect maps and fuzzy paracompactness.Fuzzy Sets and Systems, to appear Zbl 0941.54008, MR 1640139
Reference: [16] Martin H. W.: Weakly induced fuzzy topological spaces.J. Math. Anal. Appl. 78 (1980), 634–639 Zbl 0463.54007, MR 0601558, 10.1016/0022-247X(80)90170-5
Reference: [17] Okuyama A.: Note on inverse images under finite–to–one mappings.Proc. Japan Acad. 43 (1967), 953–956 MR 0234416
Reference: [18] Pareek C. M.: Open finite–to–one mappings on $p$–spaces.Math. Japon. 28 (1983), 9–13 Zbl 0531.54025, MR 0692548
Reference: [19] Proizvolov V. V.: Finitely multiple open mappings.Soviet Math. Dokl. 7 (1966), 35–38 MR 0188991
Reference: [20] Pu P.–M., Liu Y.–M.: Fuzzy topology I.Neighborhood structure of a fuzzy point and Moore–Smith convergence. J. Math. Anal. Appl. 76 (1980), 571–599 Zbl 0447.54006, MR 0587361, 10.1016/0022-247X(80)90048-7
Reference: [21] Sadyrkhanov R. S.: A finite–to–one criterion for covering maps.Soviet Math. Dokl. 28 (1983), 587–590 Zbl 0558.54011
Reference: [22] Shostak A. P.: Two decades of fuzzy topology: basic ideas, notions, and results.Russian Math. Surveys 44 (6) (1989), 125–186 Zbl 0716.54004, MR 1037011, 10.1070/RM1989v044n06ABEH002295
Reference: [23] Srivastava R., Lal S. N.: On fuzzy proper maps.Mat. Vesnik 38 (1986), 337–342 Zbl 0654.54005, MR 0870958
Reference: [24] Srivastava R., Lal S. N., Srivastava A. K.: Fuzzy Hausdorff topological spaces, J.Math. Anal. Appl. 81 (1981), 497–506 MR 0622833, 10.1016/0022-247X(81)90078-0
Reference: [25] Srivastava R., Lal S. N., Srivastava A. K.: Fuzzy $T_1$–topological spaces.J. Math. Anal. Appl. 102 (1984), 442–448 MR 0755975, 10.1016/0022-247X(84)90184-7
Reference: [26] Tanaka Y.: On open finite–to–one maps.Bull. Tokyo Gakugei Univ., Ser. IV, 25 (1973), 1–13. Zbl 0355.54008, MR 0346730
Reference: [27] Wong C. K.: Fuzzy topology: product and quotient theorems.J. Math. Anal. Appl. 45 (1974), 512–521 Zbl 0273.54002, MR 0341366, 10.1016/0022-247X(74)90090-0
.

Files

Files Size Format View
Kybernetika_34-1998-2_3.pdf 1.098Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo