Previous |  Up |  Next

Article

Title: Spectrum of randomly sampled multivariate ARMA models (English)
Author: Kadi, Amina
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 3
Year: 1998
Pages: [317]-333
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to the spectrum of multivariate randomly sampled autoregressive moving-average (ARMA) models. We determine precisely the spectrum numerator coefficients of the randomly sampled ARMA models. We give results when the non-zero poles of the initial ARMA model are simple. We first prove the results when the probability generating function of the random sampling law is injective, then we precise the results when it is not injective. (English)
Keyword: ARMA model
Keyword: spectral analysis
MSC: 60G10
MSC: 62M10
MSC: 62M15
idZBL: Zbl 1274.62633
idMR: MR1640978
.
Date available: 2009-09-24T19:16:31Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135210
.
Reference: [1] Bloomfield P.: Spectral analysis with randomly missing observations.J. Roy. Statist. Soc. B 32 (1970), 369–380 Zbl 0218.62111, MR 0287653
Reference: [2] Brillinger D. R.: Statistical inference for irregularly observed processes.In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 MR 0775893
Reference: [3] Dunsmuir W.: Estimation for stationary time series when data are irregularly spaced or missing.In: Applied Time Series II (D. F. Findley, ed.), Academic Press, New York 1981 Zbl 0482.62081
Reference: [4] Dunsmuir W.: A central limit theorem for estimation in Gaussian stationary time series observed at unequally spaced times.Stochastic Process. Appl. 14 (1983), 279–295 Zbl 0502.62073, MR 0688611, 10.1016/0304-4149(83)90005-4
Reference: [5] Dunsmuir W.: Large sample properties of estimation in time series observed at unequally spaced times.In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 Zbl 0566.62078, MR 0775894
Reference: [6] Dunsmuir W., Robinson P. M.: Parametric estimators for stationary time series with missing observations.Adv. in Appl. Probab. 13 (1981), 126–146 Zbl 0461.62075, MR 0595891, 10.2307/1426471
Reference: [7] Dunsmuir W., Robinson P. M.: Asymptotic theory for time series containing missing and amplitude modulated observations.Sankhyā Ser. A 43 (1981), Pt. 3, 260–281 Zbl 0531.62079, MR 0665872
Reference: [8] Dunsmuir W., Robinson P. M.: Estimation of time series models in the presence of missing data.J. Amer. Statist. Assoc. 76 (1981), 375, 560–568 Zbl 0471.62089, 10.1080/01621459.1981.10477687
Reference: [9] Hannan E. J.: Multiple Time Series.Wiley, New York 1970 Zbl 0279.62025, MR 0279952
Reference: [10] Kadi A.: Agrégation et échantillonnage aléatoire de séries temporelles.Thèse, Université de Paris–Sud 1994
Reference: [11] Kadi A., Oppenheim G., Viano M. C.: Random aggregation of uni and multivariate linear proceses.J. Time Ser. Anal. 15 (1994), 1, 31–43 MR 1256855, 10.1111/j.1467-9892.1994.tb00175.x
Reference: [12] Kadi A., Mokkadem A.: Matrix representations of spectral coefficients of ARMA models randomly sampled.Stochastic Process. Appl. 54 (1994), 1, 121–137 MR 1302698, 10.1016/0304-4149(94)00009-3
Reference: [13] Marshall R. J.: Autocorrelation estimation of time series with randomly missing observations.Biometrika 67 (1980), 3, 567–570 Zbl 0442.62071, MR 0601092, 10.1093/biomet/67.3.567
Reference: [14] Parzen E.: On spectral analysis with missing observations and amplitude modulation.Sankhyā, Ser. A 25 (1963), 383–392 Zbl 0136.40701, MR 0172435
Reference: [15] Robinson P. M.: Continuous model fitting from discrete data.In: Directions in Time Series (D. R. Brillinger and G. C. Tiao, eds.), Institute of Mathematical Statistics 1980, pp. 263–278 MR 0624656
Reference: [16] Robinson P. M.: Multiple time series analysis of irregularly spaced data.In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 Zbl 0556.62063, MR 0775903
Reference: [17] Shapiro H. S., Silverman R. A.: Alias–free sampling of random noise.J. Soc. Indust. Appl. Math. 8 (1960), 2, 225–248 Zbl 0121.14204, MR 0121948, 10.1137/0108013
Reference: [18] Toloi C. M. C., Morettin P. A.: Spectral analysis for amplitude–modulated time series.J. Time Ser. Anal. 14 (1993), 4, 409–432 Zbl 0787.62097, MR 1234583, 10.1111/j.1467-9892.1993.tb00154.x
.

Files

Files Size Format View
Kybernetika_34-1998-3_5.pdf 2.581Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo