Previous |  Up |  Next

Article

Title: Optimality conditions for nonconvex variational problems relaxed in terms of Young measures (English)
Author: Roubíček, Tomáš
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 3
Year: 1998
Pages: [335]-347
Summary lang: English
.
Category: math
.
Summary: The scalar nonconvex variational problems of the minimum-energy type on Sobolev spaces are studied. As the Euler–Lagrange equation dramatically looses selectivity when extended in terms of the Young measures, the correct optimality conditions are sought by means of the convex compactification theory. It turns out that these conditions basically combine one part from the Euler–Lagrange equation with one part from the Weierstrass condition. (English)
Keyword: nonconvex variational problem
Keyword: Sobolev space
Keyword: Young measure
Keyword: convex compactification theory
Keyword: Euler-Lagrange equation
Keyword: Weierstrass condition
Keyword: minimum-energy type
Keyword: optimality conditions
MSC: 49J40
MSC: 49K20
MSC: 49K27
MSC: 49Q20
idZBL: Zbl 1274.49040
idMR: MR1640982
.
Date available: 2009-09-24T19:16:38Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135211
.
Reference: [1] Aubin J.-P., Ekeland I.: Applied Nonlinear Analysis.Wiley, New York 1984 Zbl 1115.47049, MR 0749753
Reference: [2] Aubin J.-P., Frankowska H.: Set-valued Analysis.Birkhäuser 1990 Zbl 1168.49014, MR 1048347
Reference: [3] Ball J. M., James R. D.: Fine phase mixtures as minimizers of energy.Arch. Rational Mech. Anal. 100 (1988), 13–52 MR 0906132, 10.1007/BF00281246
Reference: [4] Ball J. M., James R. D.: Proposed experimental tests of a theory of fine microstructure and the two–well problem.Philos. Trans. Roy. Soc. London Ser. A 338 (1992), 389–450 Zbl 0758.73009, 10.1098/rsta.1992.0013
Reference: [5] Chipot M., Kinderlehrer D.: Equilibrium configurations of crystals.Arch. Rational Mech. Anal. 103 (1988), 237–277 Zbl 0673.73012, MR 0955934, 10.1007/BF00251759
Reference: [6] DiPerna R. J., Majda A. J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations.Commun. Math. Physics 108 (1987), 667–689 Zbl 0626.35059, MR 0877643, 10.1007/BF01214424
Reference: [7] Gamkrelidze R. V.: Principles of Optimal Control Theory (in Russian).Tbilisi Univ. Press, Tbilisi 1977. (English Translation: Plenum Press, New York 1978) MR 0686793
Reference: [8] Hoffmann K.-H., Roubíček T.: Optimal control of a fine structure.Appl. Math. Optim. 30 (1994), 113–126 Zbl 0812.49009, MR 1284322, 10.1007/BF01189449
Reference: [9] Ioffe A. D., Tihomirov V. M.: Extensions of variational problems.Trans. Moscow Math. Soc. 18 (1968), 207–273 MR 0254702
Reference: [10] Kinderlehrer D., Pedregal P.: Characterizations of Young measures generated by gradients.Arch. Rational Mech. Anal. 115 (1991), 329–365 Zbl 0754.49020, MR 1120852, 10.1007/BF00375279
Reference: [11] Kinderlehrer D., Pedregal P.: Weak convergence of integrands and the Young measure representation.SIAM J. Math. Anal. 23 (1992), 1–19 Zbl 0757.49014, MR 1145159, 10.1137/0523001
Reference: [12] Kinderlehrer D., Pedregal P.: Gradient Young measures generated by sequences in Sobolev spaces.J. Geom. Anal. 4 (1994), 59–90 Zbl 0828.46031, MR 1274138, 10.1007/BF02921593
Reference: [13] Kružík M., Roubíček T.: Explicit characterization of $L^p$-Young measures.J. Math. Anal. Appl. 198 (1996), 830–843 MR 1377827, 10.1006/jmaa.1996.0115
Reference: [14] McShane E. J.: Necessary conditions in the generalized-curve problems of the calculus of variations.Duke Math. J. 7 (1940), 1–27 MR 0003478
Reference: [15] Roubíček T.: Convex compactifications and special extensions of optimization problems.Nonlinear Anal. 16 (1991), 1117–1126 MR 1111622, 10.1016/0362-546X(91)90199-B
Reference: [16] Roubíček T.: A note about optimality conditions for variational problems with rapidly oscillating solutions.In: Progress in Partial Differential Equations: Calculus of Variations, Applications (C. Bandle et al, eds., Pitman Res. Notes in Math. Sci. 267), Longmann, Harlow, Essex 1992, pp. 312–314 MR 1194208
Reference: [17] Roubíček T.: Nonconcentrating generalized Young functionals.Comment. Math. Univ. Carolin. 38 (1997), 91–99 MR 1455472
Reference: [18] Roubíček T., Hoffmann K.-H.: About the concept of measure–valued solutions to distributed parameter systems.Math. Methods Appl. Sci. 18 (1995), 671–685 Zbl 0828.35024, MR 1339929, 10.1002/mma.1670180902
Reference: [19] Roubíček T., Hoffmann K.-H.: Theory of convex local compactifications with applications to Lebesgue spaces.Nonlinear Anal. 25 (1995), 607–628 MR 1338806, 10.1016/0362-546X(94)00150-G
Reference: [20] Weierstraß K.: Mathematische Werke, Teil VII “Vorlesungen über Variationsrechnung”.(Nachdr. d. Ausg., Leipzig, 1927) Georg Olms, Verlagsbuchhandlung, Hildesheim 1967
Reference: [21] Young L. C.: Necessary conditions in the calculus of variations.Acta Math. 69 (1938), 239–258 Zbl 0019.26702, MR 1555440, 10.1007/BF02547714
Reference: [22] Young L. C.: Lectures on the Calculus of Variations and Optimal Control Theory.W. B. Saunders, Philadelphia 1969 Zbl 0289.49003, MR 0259704
Reference: [23] Zeidler E.: Nonlinear Functional Analysis and its Applications III.Variational Methods and Optimization. Springer, New York 1985 Zbl 0583.47051, MR 0768749
.

Files

Files Size Format View
Kybernetika_34-1998-3_6.pdf 1.749Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo