Previous |  Up |  Next

Article

Title: Controllability of functional differential systems of Sobolev type in Banach spaces (English)
Author: Balachandran, Krishnan
Author: Dauer, Jerald P.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 3
Year: 1998
Pages: [349]-357
Summary lang: English
.
Category: math
.
Summary: Sufficient conditions for controllability of partial functional differential systems of Sobolev type in Banach spaces are established. The results are obtained using compact semigroups and the Schauder fixed point theorem. An example is provided to illustrate the results. (English)
Keyword: controllability
Keyword: Banach space
Keyword: differential system of Sobolev type
MSC: 34G20
MSC: 93B05
MSC: 93C25
idZBL: Zbl 1274.93031
idMR: MR1640907
.
Date available: 2009-09-24T19:16:46Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135212
.
Reference: [1] Balachandran K., Balasubramaniam P., Dauer J. P.: Controllability of nonlinear integrodifferential systems in Banach space.J. Optim. Theory Appl. 84 (1995), 83–91 Zbl 0821.93010, MR 1312963, 10.1007/BF02191736
Reference: [2] Balachandran K., Balasubramaniam P., Dauer J. P.: Controllability of quasilinear delay systems in Banach spaces.Optimal Control Appl. Methods 16 (1995), 283–290 MR 1349807
Reference: [3] Balachandran K., Balasubramaniam P., Dauer J. P.: Local null controllability of nonlinear functional differential systems in Banach spaces.J. Optim. Theory Appl. 88 (1996), 61–75 MR 1367033, 10.1007/BF02192022
Reference: [4] Brill H.: A semilinear Sobolev equation in Banach space.J. Differential Equations 24 (1977), 412–425 MR 0466818, 10.1016/0022-0396(77)90009-2
Reference: [5] Chuckwu E. N., Lenhart S. M.: Controllability questions for nonlinear systems in abstract spaces.J. Optim. Theory Appl. 68 (1991), 437–462 MR 1097312, 10.1007/BF00940064
Reference: [6] Curtain R. F., Prichard A. J.: Infinite Dimensional Linear Systems Theory.Springer–Verlag, New York 1978 MR 0516812
Reference: [7] Kartsatos A. C., Parrott M. E.: On a class of nonlinear functional pseudoparabolic problems.Funkcial. Ekvac. 25 (1982), 207–221 Zbl 0507.34064, MR 0694913
Reference: [8] Kwun Y. C., Park J. Y., Ryu J. W.: Approximate controllability and controllability for delay Volterra systems.Bull. Korean Math. Soc. 28 (1991), 131–145 MR 1127732
Reference: [9] Lagnese J.: General boundary value problems for differential equations of Sobolov type.SIAM J. Math. Anal. 3 (1972) 105–119 MR 0333422, 10.1137/0503013
Reference: [10] Lasiecka I., Triggiani R.: Exact controllability of semilinear abstract systems with application to waves and plates bounadry control problems.Appl. Math. Optim. 23 (1991), 109–154 MR 1086465, 10.1007/BF01442394
Reference: [11] Lightbourne J. H., Rankin S. M.: A partial functional differential equation of Sobolev type.J. Math. Anal. Appl. 93 (1983), 328–337 Zbl 0519.35074, MR 0700149, 10.1016/0022-247X(83)90178-6
Reference: [12] Nakagiri S., Yamamoto R.: Controllability and observability of linear retarded systems in Banach spaces.Internat. J. Control 49 (1989), 1489–1504 Zbl 0676.93029, MR 0998053, 10.1080/00207178908559721
Reference: [13] Naito K.: Approximate controllability for trajectories of semilinear control systems.J. Optim. Theory Appl. 6 (1989), 57–65 Zbl 0632.93007, MR 0981945, 10.1007/BF00938799
Reference: [14] Naito K.: On controllability for a nonlinear Volterra equation.Nonlinear Anal. 18 (1992), 99–108 Zbl 0768.93011, MR 1138645, 10.1016/0362-546X(92)90050-O
Reference: [15] Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer–Verlag, New York 1983 Zbl 0516.47023, MR 0710486
Reference: [16] Showalter R. E.: A nonlinear parabolic Sobolev equation.J. Math. Anal. Appl. 50 (1975), 183–190 Zbl 0296.35047, MR 0361479, 10.1016/0022-247X(75)90047-5
Reference: [17] Triggiani R.: Controllability and observability in Banach space with bounded operators.SIAM J. Control 13 (1975), 462–491 MR 0394386, 10.1137/0313028
Reference: [18] Ward J. R.: Boundary value problems for differential equations in Banach spaces.J. Math. Anal. Appl. 70 (1979), 589–598 MR 0543596, 10.1016/0022-247X(79)90067-2
.

Files

Files Size Format View
Kybernetika_34-1998-3_7.pdf 1.083Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo