Previous |  Up |  Next

Article

Title: On the concept of the asymptotic Rényi distances for random fields (English)
Author: Janžura, Martin
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 3
Year: 1999
Pages: [353]-366
Summary lang: English
.
Category: math
.
Summary: The asymptotic Rényi distances are explicitly defined and rigorously studied for a convenient class of Gibbs random fields, which are introduced as a natural infinite-dimensional generalization of exponential distributions. (English)
MSC: 60G60
MSC: 60K35
MSC: 62B10
MSC: 62M40
MSC: 82B05
idZBL: Zbl 1274.62061
idMR: MR1704671
.
Date available: 2009-09-24T19:26:16Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135292
.
Reference: [1] Csiszár I.: Information–type measures of difference of probability distributions and indirect observations.Stud. Sci. Math. Hungar. 2 (1967), 299–318 Zbl 0157.25802, MR 0219345
Reference: [2] Georgii H. O.: Gibbs Measures and Place Transitions.de Gruyter, Berlin 1988 MR 0956646
Reference: [3] Liese F., Vajda I.: Convex Statistical Problems.Teubner, Leipzig 1987 MR 0926905
Reference: [4] Perez A.: Risk estimates in terms of generalized $f$–entropies.In: Proc. Colloq. Inform. Theory (A. Rényi, ed.), Budapest 1968 MR 0263542
Reference: [5] Rényi A.: On measure of entropy and information.In: Proc. 4th Berkeley Symp. Math. Statist. Probab., Univ. of Calif. Press, Berkeley 1961, Vol. 1, pp. 547–561 MR 0132570
Reference: [6] Vajda I.: On the $f$–divergence and singularity of probability measures.Period. Math. Hungar. 2 (1972), 223–234 Zbl 0248.62001, MR 0335163, 10.1007/BF02018663
Reference: [7] Vajda I.: The Theory of Statistical Inference and Information.Kluwer, Dordrecht – Boston – London 1989
.

Files

Files Size Format View
Kybernetika_35-1999-3_5.pdf 1.875Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo