Previous |  Up |  Next

Article

Title: The Rényi distances of Gaussian measures (English)
Author: Michálek, Jiří
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 3
Year: 1999
Pages: [333]-352
Summary lang: English
.
Category: math
.
Summary: The author in the paper evaluates the Rényi distances between two Gaussian measures using properties of nuclear operators and expresses the formula for the asymptotic rate of the Rényi distances of stationary Gaussian measures by the corresponding spectral density functions in a general case. (English)
MSC: 46N30
MSC: 60G10
MSC: 60G15
MSC: 60G30
MSC: 62B10
idZBL: Zbl 1274.62065
idMR: MR1704670
.
Date available: 2009-09-24T19:26:09Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135291
.
Reference: [1] Gohberg I., Krein M.: An Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space.Nauka, Moscow 1965. In Russian MR 0220070
Reference: [2] Grenander V.: A contribution to the theory of Toeplitz matrices.Trans. Amer. Math. Soc. 79 (1955), 124–140 Zbl 0065.35302, MR 0070044, 10.1090/S0002-9947-1955-0070044-8
Reference: [3] Grenander V., Szegő G.: Toeplitz Forms and their Application.Innostrannaja literatura, Moscow 1961. In Russian MR 0130488
Reference: [4] Hájek J.: On linear statistical problems.Czechoslovak Math. J. 12 (87) (1962), 3, 404–444 Zbl 0114.34504, MR 0152090
Reference: [5] Kac M.: Toeplitz matrices, translation kernels and related problems in probability theory.Duke Math. J. 21 (1954), 501–509 MR 0062867
Reference: [6] Kadota T.: Simultaneous diagonalization of two covariance kernels and application to second order stochastic process.SIAM J. Appl. Math. 15 (1967), 1470–1480 MR 0241881, 10.1137/0115127
Reference: [7] Kullback S., Keegel J. C., Kullback J. H.: Topics in Statistical Information Theory (Lecture Notes in Statistics 42).Springer–Verlag, Berlin 1987 MR 0904477
Reference: [8] Michálek J.: Asymptotic Rényi’s rate of Gaussian processes.Problem Control Inform. Theory 18 (1990), 8, 209–227 Zbl 0705.62079
Reference: [9] Michálek J., Rüschendorf L.: Karhunen class processes forming a basis.In: Trans. 12th Prague Conference on Inform. Theory, Statist. Decis. Functions, Random Process., Prague 1992, Academy of Sciences of the Czech Republic, pp. 158–160
Reference: [10] Pinsker M. S.: Information and Information Stability of Random Variables and Processes.Izv. AN SSSR, Moscow 1960. In Russian MR 0191718
Reference: [11] Pisarenko B.: On the problem of detection of random signal in noise.Radiotekhn. i Elektron. 6 (1961), 4, 514–528 In Russian MR 0141540
Reference: [12] Pitcher T.: An integral expression for the log likelihood ratio of two Gaussian processes.SIAM J. Appl. Math. 14 (1966), 228–233 Zbl 0142.13902, MR 0211499, 10.1137/0114020
Reference: [13] Rozanov J.: Infinite–Dimensional Gaussian Probability Distributions.Nauka, Moscow 1968. In Russian
Reference: [14] Vajda I.: Theory of Statistical Inference and Information.Kluwer, Dordrecht 1989 Zbl 0711.62002
.

Files

Files Size Format View
Kybernetika_35-1999-3_4.pdf 2.485Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo