Previous |  Up |  Next

Article

Title: Weighted $\Cal H_\infty$ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control (English)
Author: Carter, Delano R.
Author: Rodriguez, Armando A.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 5
Year: 1999
Pages: [527]-554
Summary lang: English
.
Category: math
.
Summary: This paper considers the problem of designing near-optimal finite-dimensional controllers for stable multiple-input multiple-output (MIMO) distributed parameter plants under sampled-data control. A weighted $ {\cal H}^\infty $-style mixed-sensitivity measure which penalizes the control is used to define the notion of optimality. Controllers are generated by solving a “natural” finite-dimensional sampled-data optimization. A priori computable conditions are given on the approximants such that the resulting finite- dimensional controllers stabilize the sampled-data controlled distributed parameter plant and are near-optimal. The proof relies on the fact that the control input is appropriately penalized in the optimization. This technique also assumes and exploits the fact that the plant can be approximated uniformly by finite-dimensional systems. Moreover, it is shown how the optimal performance may be estimated to any desired degree of accuracy by solving a single finite-dimensional problem using a suitable finite-dimensional approximant. The constructions given are simple. Finally, it should be noted that no infinite-dimensional spectral factorizations are required. In short, the paper provides a straight forward control design approach for a large class of MIMO distributed parameter systems under sampled-data control. (English)
Keyword: MIMO
Keyword: distributed parameter system
Keyword: sampled-data control
Keyword: finite-dimensional controllers
Keyword: finite-dimensional systems
MSC: 93B36
MSC: 93B51
MSC: 93C35
MSC: 93C57
idZBL: Zbl 1274.93183
idMR: MR1728467
.
Date available: 2009-09-24T19:27:55Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135307
.
Reference: [1] Bamieh B. A., Pearson J. B.: A general framework for linear periodic systems with applications to ${\mathcal H}^\infty $ sampled–data control.IEEE Trans. Automat. Control 37 (1992), 418–435 MR 1153103, 10.1109/9.126576
Reference: [2] Boyd, S .P., Balakrishnan V., Kabamba P.: A bisection method for computing the ${\mathcal H}^\infty $ norm of a transfer matrix and related problems.Math. Control Signals Systems 2 (1989), 207–219 MR 0997214, 10.1007/BF02551385
Reference: [3] Callier F. M., Desoer C. A.: An algebra of transfer functions for distributed linear time–invariant systems.IEEE Trans. Circuits and Systems 25 (1978), 9, 651–662 Zbl 0468.93020, MR 0510690, 10.1109/TCS.1978.1084544
Reference: [4] Cantoni M. W., Glover K.: A design framework for continuous–time systems under sampled–data control.In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 458–463
Reference: [5] Chen T., Francis B.: ${\mathcal H}^2$-optimal Sampled–Data Control.Technical Report No. 9001, Dept. Elect. Eng., Univ. Toronto, 1990 MR 1097092
Reference: [6] Chen T., Francis B.: Optimal Sampled–Data Control Systems.Springer–Verlag, London – New York 1995 Zbl 0876.93002, MR 1410060
Reference: [7] Conway J. B.: A Course in Functional Analysis.Springer–Verlag, Berlin 1990 Zbl 0706.46003, MR 1070713
Reference: [8] Desoer C. A., Vidyasagar M.: Feedback Systems: Input–Output Properties.Academic Press, NY 1975 Zbl 1153.93015, MR 0490289
Reference: [9] Dullerud G. E.: Control of Uncertain Sampled–Data Systems.Birkhäuser, Boston 1996 Zbl 0843.93006, MR 1377267
Reference: [10] Flamm D. S., Mitter S. K.: Approximation of ideal compensators for delay systems.In: Linear Circuits, Systems and Signal Processing: Theory and Applications (C. I. Byrnes, C. F. Martin and R. E. Saeks, eds.), Elsevier Science Publishers B. V., 1988, pp. 517–524 Zbl 0675.93027, MR 1031070
Reference: [11] Foias C., Francis B., Helton J. W., Kwakernaak H., Pearson J. B.: ${\mathcal H}^\infty $-Control Theory.(Lecture Notes in Mathematics 1496.) Springer-Verlag, Berlin 1991
Reference: [12] Foias C., Özbay H., Tannenbaum A.: Robust Control of Infinite Dimensional Systems.(Lecture Notes in Control and Information Sciences.) Springer–Verlag, Berlin 1996 Zbl 0839.93003, MR 1369772
Reference: [13] Francis B. A.: A Course in Control Theory.Springer-Verlag, Berlin 1987 MR 0932459
Reference: [14] Gibson J. S., Adamian A.: Approximation theory for linear–quadratic–gaussian optimal control of flexible structures.SIAM J. Control Optim. 29 (1991), 1, 1–37 Zbl 0788.93027, MR 1088217, 10.1137/0329001
Reference: [15] Gibson J. S., Rosen I. G.: Numerical approximation for the infinite–dimensional discrete–time optimal linear–quadratic regulator problem.SIAM J. Control Optim. 26 (1988), 2, 428–451 Zbl 0644.93013, MR 0929811, 10.1137/0326025
Reference: [16] Glader C., Högnäs G., Mäkilä P. M., Toivonen H. T.: Approximation of delay systems – a case study.Internat. J. Control 53 (1991), 2, 369–390 Zbl 0745.93016, MR 1091150, 10.1080/00207179108953623
Reference: [17] Glover K.: All optimal Hankel–norm approximations of linear multivariable systems and their ${\mathcal L}^\infty $-error bounds.Internat. J. Control 39 (1984), 6, 1115–1193 MR 0748558, 10.1080/00207178408933239
Reference: [18] Glover K., Curtain R. F., Partington J. R.: Realisation and approximation of linear infinite–dimensional systems with error bounds.SIAM J. Control Optim. 26 (1988), 4, 863–898 Zbl 0654.93011, MR 0948650, 10.1137/0326049
Reference: [19] Glover K., Lam J., Partington J. R.: Rational approximation of a class of infinite–dimensional systems.I: singular values of Hankel operators. Math. Control Signals Systems 4 (1990), 325–344 Zbl 0727.41020, MR 1066376, 10.1007/BF02551374
Reference: [20] Glover K., Lam J., Partington J. R.: Rational approximation of a class of infinite–dimensional systems.II: optimal convergence rates of ${\mathcal L}^\infty $ approximants. Math. Control Signals Systems 4 (1991), 233–246 Zbl 0733.41023, MR 1107236, 10.1007/BF02551279
Reference: [21] Gu G., Khargonekar P. P., Lee E. B.: Approximation of infinite–dimensional systems.IEEE Trans. Automat. Control 34 (1989), 6, 610–618 Zbl 0682.93035, MR 0996150, 10.1109/9.24229
Reference: [22] Ichikawa A.: The semigroup approach to ${\mathcal H}^2$ and ${\mathcal H}^\infty $-control for sampled–data systems with first–order hold.In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 452–457
Reference: [23] Ito K.: Finite–dimensional compensators for infinite-dimensional systems via Galerkin–type approximation.SIAM J. Control Optim. 28 (1990), 6, 1251–1269 Zbl 0733.93031, MR 1075203, 10.1137/0328067
Reference: [24] Kabamba P. T., Hara S.: Worst–case analysis and design of sampled–data control systems.IEEE Trans. Automat. Control 38 (1993), 1337–1357 Zbl 0787.93068, MR 1240826, 10.1109/9.237646
Reference: [25] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Stabilization of time delay systems with finite–dimensional compensators.IEEE Trans. Automat. Control 30 (1985), 75–78 MR 0777079, 10.1109/TAC.1985.1103789
Reference: [26] Lenz K., Ozbay H., Tannenbaum A., Turi J., Morton B.: Robust control design for a flexible beam using a distributed parameter ${\mathcal H}^\infty $ method.In: CDC, Tampa 1989 MR 1039105
Reference: [27] Logemann H., Townley S.: Adaptive low–gain sampled–data control of DPS.In: Proceedings of the 34th Conference on Decision and Control, New Orleans 1995, pp, 2946–2947
Reference: [28] Mäkilä P. M.: Laguerre series approximation of infinite dimensional systems.Automatica 26 (1990), 6, 985–995 Zbl 0717.93028, MR 1080985, 10.1016/0005-1098(90)90083-T
Reference: [29] McFarlane D. C., Glover K.: Robust Controller Design Using Normalized Coprime Factor Plant Descriptions.Springer–Verlag, Berlin 1990 Zbl 0688.93044, MR 1029524
Reference: [30] Rodriguez A. A., Dahleh M. A.: Weighted ${\mathcal H}^\infty $ optimization for stable infinite–dimensional systems using finite–dimensional techniques.In: Proceedings of the 29th IEEE CDC, Honolulu 1990, pp. 1814–1820
Reference: [31] Rodriguez A. A., Dahleh M. A.: On the computation of induced norms for non–compact Hankel operators arising from distributed control problems.Systems Control Lett. 19 (1992), 429–438 Zbl 0787.47024, MR 1195300, 10.1016/0167-6911(92)90074-3
Reference: [32] Rosen I. G.: Optimal discrete–time LQR problems for parabolic systems with unbounded input – approximation and convergence.Control Theory Adv. Tech. 5 (1989), 227–300 MR 1020634
Reference: [33] Rosen I. G., Wang C.: On the continuous dependence with respect to sampling of the linear quadratic regulator problem for distributed parameter systems.SIAM J. Control Optim. 30 (1992), 4, 942–974 Zbl 0765.49021, MR 1167820, 10.1137/0330052
Reference: [34] Rosen I. G., Wang C.: On stabilizability and sampling for infinite dimensional systems.IEEE Trans. Automat. Control 37 (1992), 10, 1653–1656 Zbl 0770.93080, MR 1188781, 10.1109/9.256405
Reference: [35] Royden H. L.: Real Analysis.MacMillan Publishing Co, Inc, 1968 MR 0151555
Reference: [36] Sågfors M. F., Toivonen H. T.: The sampled–data ${\mathcal H}^\infty $ problem: The equivalence of discretization–based methods and a Riccati equation solution.In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 428–433
Reference: [37] Smith M.: Well–posedness of ${\mathcal H}^\infty $ optimal control problems.SIAM J. Control Optim. 28 (1990), 342–358 MR 1040463, 10.1137/0328018
Reference: [38] Sun W., Nagpal K. M., Khargonekar P. P.: ${\mathcal H}^\infty $ control and filtering for sampled–data systems.IEEE Trans. Automat. Control 38 (1993), 1162–1175 MR 1235247, 10.1109/9.233150
Reference: [39] Sz.-Nagy B., Foiaş C.: Harmonic Analysis of Operators on Hilbert Space.North–Holland, Amsterdam 1970 Zbl 1234.47001, MR 0275190
Reference: [40] Tadmor G.: ${\mathcal H}^\infty $ optimal sampled–data control in continuous time systems.Internat. J. Control 56 (1992), 1, 99–141 MR 1170889, 10.1080/00207179208934306
Reference: [41] Toivonen H. T.: Sampled–data control of continuous–time systems with an ${\mathcal H}^\infty $ optimality criterion.Automatica 28 (1992), 45–54 MR 1144109, 10.1016/0005-1098(92)90006-2
Reference: [42] Vidyasagar M.: Control Systems Synthesis: A Factorization Approach.MIT Press, Cambrdige MA 1985
Reference: [43] Yamamoto Y.: A function space approach to sampled–data control systems and tracking problem.IEEE Trans. Automat. Control 39 (1994), 703–713 MR 1276768, 10.1109/9.286247
Reference: [44] Yue D., Liu Y., Xu S.: Finite–dimensional compensator for a class of uncertain distributed parameter systems.Internat. J. Systems Sci. 26 (1995), 12, 2383–2390 Zbl 0853.93056, 10.1080/00207729508929175
Reference: [45] Youla D. C., Jabr H. A., Bongiorno J. J.: Modern Wiener–Hopf design of optimal controllers.Part 2: The multivariable case. IEEE Trans. Automat. Control 21 (1976), 319–338 Zbl 0339.93035, MR 0446637, 10.1109/TAC.1976.1101223
.

Files

Files Size Format View
Kybernetika_35-1999-5_1.pdf 3.929Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo