Title:
|
$\ell^1$-optimal control for multirate systems under full state feedback (English) |
Author:
|
Aubrecht, Johannes |
Author:
|
Voulgaris, Petros G. |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
35 |
Issue:
|
5 |
Year:
|
1999 |
Pages:
|
[555]-586 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper considers the minimization of the $\ell ^\infty $-induced norm of the closed loop in linear multirate systems when full state information is available for feedback. A state-space approach is taken and concepts of viability theory and controlled invariance are utilized. The essential idea is to construct a set such that the state may be confined to that set and that such a confinement guarantees that the output satisfies the desired output norm conditions. Once such a set is computed, it is shown that a memoryless nonlinear controller results, which achieves near-optimal performance. The construction involves the solution of several finite linear programs and generalizes to the multirate case earlier work on linear time-invariant (LTI) systems. (English) |
Keyword:
|
state-space approach |
Keyword:
|
full state feedback |
Keyword:
|
$\ell^1$ norm |
Keyword:
|
multirate system |
Keyword:
|
near-optimal performance |
Keyword:
|
memoryless nonlinear controller |
Keyword:
|
viability theory |
MSC:
|
93B36 |
MSC:
|
93B52 |
MSC:
|
93C05 |
MSC:
|
93C35 |
idZBL:
|
Zbl 1274.93098 |
idMR:
|
MR1728468 |
. |
Date available:
|
2009-09-24T19:28:02Z |
Last updated:
|
2015-03-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135308 |
. |
Reference:
|
[1] Aubin J. P.: Viability Theory.Birkhäuser, Boston 1991 MR 1134779 |
Reference:
|
[2] Aubin J. P., Cellina A.: Differential Inclusions.Springer–Verlag, New York 1984 Zbl 0538.34007, MR 0755330 |
Reference:
|
[3] Dahleh M. A., Voulgaris P. G., Valavani L. S.: Optimal and robust controllers for periodic and multirate systems.IEEE Trans. Automat. Control AC–37 (1992), 1, 90–99 Zbl 0747.93028, MR 1139618, 10.1109/9.109641 |
Reference:
|
[4] Diaz–Bobillo I. J., Dahleh M. A.: State feedback $\ell ^1$-optimal controllers can be dynamic.Systems Control Lett. 19 (1992), 2, 245–252 MR 1178920 |
Reference:
|
[5] Diaz–Bobillo I. J., Dahleh M. A.: Minimization of the maximum peak-topeak gain: the general multiblock problem.IEEE Trans. Automat. Control 38 (1993), 10, 1459–1482 MR 1242894, 10.1109/9.241561 |
Reference:
|
[6] Frankowska H., Quincampoix M.: Viability kernels of differential inclusions with constraints: Algorithm and applications.J. Math. Systems, Estimation, and Control 1 (1991), 3, 371–388 MR 1151310 |
Reference:
|
[7] Meyer D. G.: A parametrization of stabilizing controllers for multirate sampled–data systems.IEEE Trans. Automat. Control 5 (1990), 2, 233–236 Zbl 0705.93031, MR 1038429, 10.1109/9.45189 |
Reference:
|
[8] Meyer D. G.: A new class of shift–varrying operators, their shift–invariant equivalents, and multirate digital systems.IEEE Trans. Automat. Control 35 (1990), 429–433 MR 1047995, 10.1109/9.52295 |
Reference:
|
[9] Meyer D. G.: Controller parametrization for time–varying multirate plants.IEEE Trans. Automat. Control 35 (1990), 11, 1259–1262 MR 1074895, 10.1109/9.59815 |
Reference:
|
[10] Quincampoix M.: An algorithm for invariance kernels of differential inclusions.In: Set–Valued Analysis and Differential Inclusions (A. B. Kurzhanski and V. M. Veliov, eds.). Birkhäuser, Boston 1993, pp. 171–183 Zbl 0794.49005, MR 1269813 |
Reference:
|
[11] Quincampoix M., Saint–Pierre P.: An algorithm for viability kernels in Holderian case: Approximation by discrete dynamical systems.J. Math. Systems, Estimation, and Control 5 (1995), 1, 1–13 MR 1646282 |
Reference:
|
[12] Shamma J. S.: Nonlinear state feedback for $\ell ^1$ optimal contro.Systems Control Lett. 21 (1993), 265–270 Zbl 0798.93030, MR 1241404, 10.1016/0167-6911(93)90067-G |
Reference:
|
[13] Shamma J. S.: Optimization of the $\ell ^\infty $-induced norm under full state feedback.To appear. Summary in: Proceedings of the 33rd IEEE Conference on Decision and Control, 1994 |
Reference:
|
[14] Shamma J. S., Tu K.–Y.: Set–valued observers and optimal disturbance rejection.To appear Zbl 0958.93013, MR 1669978 |
Reference:
|
[15] Stoorvogel A. A.: Nonlinear ${\mathcal L}_1$ optimal controllers for linear systems.IEEE Trans. Automat. Control 40 (1995), 4, 694–696 MR 1324862, 10.1109/9.376108 |
. |