Previous |  Up |  Next

Article

Title: Continuous-time input-output decoupling for sampled-data systems (English)
Author: Grasselli, Osvaldo M.
Author: Menini, Laura
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 6
Year: 1999
Pages: [721]-735
Summary lang: English
.
Category: math
.
Summary: The problem of obtaining a continuous-time (i. e., ripple-free) input-output decoupled control system for a continuous-time linear time-invariant plant, by means of a purely discrete-time compensator, is stated and solved in the case of a unity feedback control system. Such a control system is hybrid, since the plant is continuous-time and the compensator is discrete-time. A necessary and sufficient condition for the existence of a solution of such a problem is given, which reduces the mentioned hybrid control problem to an equivalent purely continuous-time decoupling problem. A simple necessary and sufficient condition for the existence of a solution of such a continuous-time decoupling problem is given for square plants (with and without the additional requirement of the asymptotic stability of the over-all control system), together with a parameterisation of all the decoupling controllers. Moreover, for square plants, it is shown that, whenever the hybrid control problem admits a solution, any solution of the corresponding decoupling problem for the discrete-time model of the given continuous-time system is also a solution of the hybrid control problem. (English)
Keyword: continuous-time control
Keyword: input-output decoupling
Keyword: sampled-data systems
Keyword: unity feedback control
MSC: 93B17
MSC: 93B52
MSC: 93C30
MSC: 93C57
idZBL: Zbl 1274.93185
idMR: MR1747972
.
Date available: 2009-09-24T19:29:34Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135321
.
Reference: [1] Argoun M. B., Vegte J. van de: Output feedback decoupling in the frequency domain.Internat. J. Control 31 (1980), 4, 665–675 MR 0572135, 10.1080/00207178008961074
Reference: [2] Chen. C. T.: Linear System Theory and Design.Holt, Rinehart and Winston, New York 1984
Reference: [3] Descusse J., Lafay J. F., Malabre M.: Solution to Morgan’s problem.IEEE Trans. Automomat. Control AC-33 (1988), 8, 732–739 Zbl 0656.93018, MR 0950794
Reference: [4] Desoer C. A., Gündes A. N.: Decoupling linear multiinput multioutput plants by dynamic output feedback: an algebraic theory.IEEE Trans. Automat. Control AC-31 (1986), 8, 744–750 Zbl 0603.93029, MR 0848673
Reference: [5] Dickman A., Sivan R.: On the robustness of multivariable linear feedback systems.IEEE Trans. Automat. Control AC-30 (1985), 4, 401–404 Zbl 0581.93019, MR 0786718, 10.1109/TAC.1985.1103964
Reference: [6] Falb P. L., Wolovich W. A.: Decoupling in the design and synthesis of multivariable control systems.IEEE Trans. Automat. Control AC-12 (1967), 6, 651–659 10.1109/TAC.1967.1098737
Reference: [7] Francis B. A., Georgiou T. T.: Stability theory for linear time-invariant plants with periodic digital controllers.IEEE Trans. Automat. Control AC-33 (1988), 9, 820–832 Zbl 0651.93053, MR 0953876, 10.1109/9.1310
Reference: [8] Franklin G. F., Emami–Naeini A.: Design of ripple–free multivariable robust servomechanism.IEEE Trans. Automat. Control AC-31 (1986), 7, 661–664 10.1109/TAC.1986.1104361
Reference: [9] Grasselli O. M., Longhi S., Tornambè A., Valigi P.: Robust ripple–free regulation and tracking for parameter dependent sampled–data systems.IEEE Trans. Automat. Control AC-41 (1996), 7, 1031–1037 Zbl 0875.93264, MR 1398790, 10.1109/9.508911
Reference: [10] Gündes A. N.: Parameterization of decoupling controllers in the unity–feedback system.IEEE Trans. Automat. Control AC-37 (1992), 10, 1572–1575 Zbl 0770.93063, MR 1188761, 10.1109/9.256385
Reference: [11] Hautus M. L. J., Heymann M.: Linear feedback decoupling – transfer function analysis.IEEE Trans. Automat. Control AC-28 (1983), 8, 823–832 Zbl 0523.93035, MR 0717840
Reference: [12] Lin C. A.: Necessary and sufficient conditions for existence of decoupling controllers.IEEE Trans. Automat. Control AC-42 (1997), 8, 1157–1161 Zbl 0890.93039, MR 1469078
Reference: [14] Urikura S., Nagata A.: Ripple–free deadbeat control for sampled–data systems.IEEE Trans. Automat. Control AC-32 (1987), 474–482 Zbl 0622.93046, MR 0887584, 10.1109/TAC.1987.1104641
Reference: [15] Wang Q. G.: Decoupling with internal stability for unity output feedback systems.Automatica 28 (1992), 411–415 Zbl 0766.93044, MR 1157011, 10.1016/0005-1098(92)90128-3
Reference: [16] Wonham W. M., Morse A. S.: Decoupling and pole assignment in linear multivariable systems: a geometric approach.SIAM J. Control 8 (1970), 1–18 Zbl 0206.16404, MR 0270771, 10.1137/0308001
Reference: [17] Yamamoto Y.: A function space approach to sampled data control systems and tracking problems.IEEE Trans. Automat. Control AC-39 (1994), 4, 703–713 Zbl 0807.93038, MR 1276768, 10.1109/9.286247
.

Files

Files Size Format View
Kybernetika_35-1999-6_6.pdf 2.268Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo