Previous |  Up |  Next

Article

Title: Balanced reduction of linear periodic systems (English)
Author: Longhi, Sauro
Author: Orlando, Giuseppe
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 6
Year: 1999
Pages: [737]-751
Summary lang: English
.
Category: math
.
Summary: For linear periodic discrete-time systems the analysis of the model error introduced by a truncation on the balanced minimal realization is performed, and a bound for the infinity norm of the model error is introduced. The results represent an extension to the periodic systems of the well known results on the balanced truncation for time-invariant systems. The general case of periodically time-varying state-space dimension has been considered. (English)
Keyword: balanced truncation
Keyword: linear periodic system
Keyword: model error
Keyword: infinity norm
MSC: 93B17
MSC: 93C05
MSC: 93C55
MSC: 93D15
idZBL: Zbl 1274.93112
idMR: MR1747973
.
Date available: 2009-09-24T19:29:41Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135322
.
Reference: [1] Al–Saggaf U. M., Franklin G. F.: An error bound for a discrete reduced order model of a linear multivariable system.IEEE Trans. Automat. Control AC–32 (1987), 9, 815–819 Zbl 0622.93021
Reference: [2] Bittanti S.: Deterministic and stochastic linear periodic systems.In: Time Series and Linear Systems (S. Bittanti, ed.), Springer–Verlag, Berlin 1986 MR 0897824
Reference: [3] Bolzern P., Colaneri P.: Existence and uniqueness conditions for the periodic solutions of the discrete–time periodic Lyapunov equations.In: Proc. of 25th Conference on Decision and Control, Athens 1986, pp. 1439–1443
Reference: [4] Bolzern P., Colaneri P., Scattolini R.: Zeros of discrete–time linear periodic systems.IEEE Trans. Automat. Control AC–31 (1986), 1057–1059 Zbl 0606.93036, 10.1109/TAC.1986.1104172
Reference: [5] Colaneri P., Longhi S.: The lifted and cyclic reformulations in the minimal realization of linear discrete–time periodic systems.In: Proc. of the 1st IFAC Workshop on New Trends in Design of Control Systems, Smolenice 1994, pp. 329–334
Reference: [6] Colaneri P., Longhi S.: The realization problem for linear periodic systems.Automatica 31 (1995), 775–779 Zbl 0822.93019, MR 1335982, 10.1016/0005-1098(94)00155-C
Reference: [7] Evans D. S.: Finite–dimensional realizations of discrete–time weighting patterns.SIAM J. Appl. Math. 22 (1972), 45–67 MR 0378915, 10.1137/0122006
Reference: [8] Flamm D. S.: A new shift–invariant representation for periodic linear systems.Systems Control Lett. 17 (1991), 9–14 Zbl 0729.93034, MR 1116110, 10.1016/0167-6911(91)90093-T
Reference: [9] Fortuna L., Nunnari G., Gallo A.: Model Order Reduction Techniques with Applications in Electrical Engineering.Springer–Verlag, Berlin 1992
Reference: [10] Glover K.: All optimal Hankel–norm approximation of linear multivariable systems and their $L^\infty $–errors bounds.Internat. J. Control 39 (1984), 6, 1115–1193 MR 0748558, 10.1080/00207178408933239
Reference: [11] Gohberg I., Kaashoek M. A., Lerer L.: Minimality and realization of discrete time–varying systems.Oper. Theory: Adv. Appl. 56 (1992), 261–296 Zbl 0242.93024, MR 1173922
Reference: [12] Grasselli O. M., Longhi S.: Disturbance localization by measurements feedback for linear periodic discrete–time systems.Automatica 24 (1988), 375–385 MR 0947377, 10.1016/0005-1098(88)90078-7
Reference: [13] Grasselli O. M., Longhi S.: Zeros and poles of linear periodic discrete–time systems.Circuits Systems Signal Process. 7 (1988), 361–380 MR 0962108
Reference: [14] Grasselli O. M., Longhi S.: Robust tracking and regulation of linear periodic discrete–time systems.Internat. J. Control 54 (1991), 613–633 Zbl 0728.93065, MR 1117838, 10.1080/00207179108934179
Reference: [15] Grasselli O. M., Longhi S.: The geometric approach for linear periodic discrete–time systems.Linear Algebra Appl. 158 (1991), 27–60 Zbl 0758.93044, MR 1126434
Reference: [16] Gree M., Limebeer D. J. N.: Linear Robust Control.Prentice Hall, Englewood Cliffs, N. J. 1995
Reference: [17] Mayer R. A., Burrus C. S.: A unified analysis of multirate and periodically time–varying digital filters.Trans. Ccts Syst. CSA–22 (1975), 162–168 MR 0392090
Reference: [18] Moore B. C.: Principal component analysis in linear systems: controllability, observability and modal reduction.Trans. Automat. Control AC–26 (1981), 17–32 MR 0609248, 10.1109/TAC.1981.1102568
Reference: [19] Park B., Verriest E. I.: Canonical forms on discrete linear periodically time–varying systems and a control application.In: Proc. of the 28th IEEE Conference on Decision and Control, Tampa 1989, pp. 1220–1225 MR 1038997
Reference: [20] Pernebo L., Silverman L. M.: Model reduction via balanced state space representations.IEEE Trans. Automat. Control AC–27 (1982), 2, 382–387 Zbl 0482.93024, MR 0680103, 10.1109/TAC.1982.1102945
Reference: [21] Salomon G., Zhou K., Wu E.: A new balanced realization and model reduction method for unstable systems.In: Proc. of 14th IFAC World Congress, Beijing 1999, vol. D, pp. 123–128
Reference: [22] Shokoohi S., Silverman L. M., Dooren P. Van: Linear time–variable systems: balancing and model reduction.Trans. Automat. Control AC-28 (1983), 8, 810–822 MR 0717839
Reference: [23] Shokoohi S., Silverman L. M., Dooren P. Van: Linear time–variable systems: stability of reduced models.Automatica 20 (1984), 1, 59–67 MR 0737946, 10.1016/0005-1098(84)90065-7
Reference: [24] Varga A.: Periodic Lyapunov equations: some applications and new algorithms.Internat. J. Control 67 (1997), 69–87 Zbl 0873.93057, MR 1685840, 10.1080/002071797224360
Reference: [25] Xie B., Aripirala R. K. A. V., Syrmos V. L.: Model reduction of linear discrete–time periodic systems using Hankel–norm approximation.In: Proc. of IFAC 13th World Congress, San Francisco, 1996, pp. 245–250
.

Files

Files Size Format View
Kybernetika_35-1999-6_7.pdf 2.241Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo