Previous |  Up |  Next

Article

Title: Robust observer design for time-delay systems: a Riccati equation approach (English)
Author: Fattouh, Anas
Author: Sename, Olivier
Author: Dion, Jean-Michel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 6
Year: 1999
Pages: 753-764
Summary lang: English
.
Category: math
.
Summary: In this paper, a method for $H_\infty $ observer design for linear systems with multiple delays in state and output variables is proposed. The designing method involves attenuating of the disturbance to a pre-specified level. The observer design requires solving certain algebraic Riccati equation. An example is given in order to illustrate the proposed method. (English)
Keyword: linear system
Keyword: time delay
Keyword: Riccati equation
Keyword: robust observer design
MSC: 93B07
MSC: 93B36
MSC: 93B51
idZBL: Zbl 1274.93079
idMR: MR1747974
.
Date available: 2009-09-24T19:29:49Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135323
.
Reference: [1] Boyd S., Ghaoui L. EL, Feron E., Balakrishnan V.: Linear matrix inequalities in system and control theory.SIAM Stud. Appl. Math. 1994 Zbl 0816.93004, MR 1284712
Reference: [2] Choi H. H., Chung M. J.: Observer–based $H_{\infty }$ controller design for state delayed linear systems.Automatica 32 (1996), 1073–1075 MR 1405466, 10.1016/0005-1098(96)00014-3
Reference: [3] Choi H. H., Chung M. J.: An LMI approach to $H_{\infty }$ controller design for linear time–delay systems.Automatica 33 (1997), 737–739 MR 1448971, 10.1016/S0005-1098(96)00242-7
Reference: [4] Fattouh A., Sename O., Dion J.-M.: $H_{\infty }$ Observer design for time–delay systems.In: Proc. of the 37th IEEE Conference on Decision and Control, Tampa 1998, pp. 4545–4546
Reference: [5] Fattouh A., Sename O., Dion J.-M.: $\alpha $–decay rate observer design for linear systems with delayed state.In: Proc. of the 8th European Control Conference, Karlsruhe 1999
Reference: [6] Furukawa T., Shimemura E.: Stabilizability conditions by memoryless feedback for linear systems with time-delay.Internat. J. Control. 37 (1983), 553–565 Zbl 0503.93050, MR 0703298, 10.1080/00207178308932992
Reference: [7] Khargonekar P. P., Petersen I. R., Zhou K.: Robust stabilization of uncertain linear systems: Quadratic stabilizability and $H_\infty $ control theory.IEEE Trans. Automat. Control 35 (1990), 356–361 MR 1044036, 10.1109/9.50357
Reference: [8] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equation.Academic Press, New York 1986 MR 0860947
Reference: [9] Lee E. B., Olbrot A.: Observability and related structural results for linear hereditary systems.Internat. J. Control. 34 (1981), 1061–1078 Zbl 0531.93015, MR 0643872, 10.1080/00207178108922582
Reference: [10] Lee J. H., Kim S. W., Kwon W. H.: Memoryless $H^{\infty }$ controllers for state delayed systems.IEEE Trans. Automat. Control 39 (1994), 159–162 MR 1258692, 10.1109/9.273356
Reference: [11] Niculescu S. I., Trofino–Neto A., Dion J.-M., Dugard L.: Delay–dependent stability of linear systems with delayed state: An L.M.I. approach. In: Proc. of the 34th Conference on Decision and Control, New Orleans 1995, pp. 1495–1496
Reference: [12] Pearson A. E., Fiagbedzi Y. A.: An observer for time lag systems.IEEE Trans. Automat. Control 34 (1989), 775–777 Zbl 0687.93011, MR 1000675, 10.1109/9.29412
Reference: [13] Petersen I. R., Anderson B. D. O., Jonckheere E. A.: A first principles solution to the non–singular $H^\infty $ control problem.Internat. J. Robust and Nonlinear Control 1 (1991), 171–185 10.1002/rnc.4590010304
Reference: [14] Ramos J. L., Pearson A. E.: An asymptotic modal observer for linear autonomous time lag systems.IEEE Trans. Automat. Control 40 (1995), 1291–1294 Zbl 0825.93084, MR 1344050, 10.1109/9.400473
Reference: [15] Watanabe K.: Finite spectrum assignment and observer for multivariable systems with commensurate delays.IEEE Trans. Automat. Control 31 (1986), 543–550 Zbl 0596.93009, MR 0839083, 10.1109/TAC.1986.1104336
Reference: [16] Watanabe K., Ouchi T.: An observer of systems with delays in state variables.Internat. J. Control 41 (1985), 217–229 MR 0775229, 10.1080/0020718508961121
Reference: [17] Yao Y. X., Zhang Y. M., Kovacevic R.: Parameterization of observers for time delay systems and its application in observer design.IEE Proc. Control Theory Appl. 143 (1996), 225–232
Reference: [18] Zhou K., Doyle J. C., Glover K.: Robust and Optimal Control.Prentice–Hall, Englewood Cliffs, N. J. 1996 Zbl 0999.49500
.

Files

Files Size Format View
Kybernetika_35-1999-6_8.pdf 1.793Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo