Previous |  Up |  Next

Article

Title: On calculation of stationary density of autoregressive processes (English)
Author: Anděl, Jiří
Author: Hrach, Karel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 3
Year: 2000
Pages: [311]-319
Summary lang: English
.
Category: math
.
Summary: An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail. (English)
Keyword: AR(1) model
Keyword: AR(2) model
MSC: 60G10
MSC: 62M10
MSC: 65C60
idZBL: Zbl 1248.62141
idMR: MR1773506
.
Date available: 2009-09-24T19:33:04Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135352
.
Reference: [1] Anděl J.: Dependent random variables with a given marginal distribution.Acta Univ. Carolin. – Math. Phys. 24 (1983), 3–11 MR 0733140
Reference: [2] Anděl J.: Marginal distributions of autoregressive processes.In: Trans. 9th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1983, pp. 127–135 MR 0757732
Reference: [3] Anděl J.: On linear processes with given moments.J. Time Ser. Anal. 8 (1987), 373–378 MR 0917790, 10.1111/j.1467-9892.1987.tb00001.x
Reference: [4] Anděl J.: AR(1) processes with given moments of marginal distribution.Kybernetika 22 (1989), 337–347 Zbl 0701.62087, MR 1024709
Reference: [5] Anděl J., Bartoň T.: A note on the threshold AR(1) model with Cauchy innovations.J. Time Ser. Anal. 7 (1986), 1–5 Zbl 0587.60033, MR 0832348, 10.1111/j.1467-9892.1986.tb00481.x
Reference: [6] Anděl J., Garrido M.: On stationary distributions of some time series models.In: Trans. 10th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1988, pp. 193–202 MR 1136274
Reference: [7] Anděl J., Gómez M., Vega C.: Stationary distribution of some nonlinear AR(1) processes.Kybernetika 25 (1989), 453–460 Zbl 0701.60029, MR 1035151
Reference: [8] Anděl J., Netuka I., Zvára K.: On threshold autoregressive processes.Kybernetika 20 (1984), 89–106 Zbl 0547.62058, MR 0747062
Reference: [9] Bernier J.: Inventaire des modèles et processus stochastique applicables de la description des déluts journaliers des riviers.Rev. Inst. Internat. Statist. 38 (1970), 50–71 10.2307/1402324
Reference: [10] Davis R. A., Rosenblatt M.: Parameter estimation for some time series models without contiguity.Statist. Probab. Lett. 11 (1991), 515–521 Zbl 0725.62079, MR 1116746, 10.1016/0167-7152(91)90117-A
Reference: [11] Feller W.: An Introduction to Probability Theory and its Applications II.Wiley, New York 1966 MR 0210154
Reference: [12] Gaver D. P., Lewis P. A. W.: First–order autoregressive gamma sequences and point processes.Adv. in Appl. Probab. 12 (1980), 727–745 Zbl 0453.60048, MR 0578846, 10.2307/1426429
Reference: [13] Haiman G.: Upper and lower bounds for the tail of the invariant distribution of some AR(1) processes.In: Asymptotic Methods in Probability and Statistics (B. Szyszkowicz, ed.), North–Holland/Elsevier, Amsterdam 1998, pp. 723–730 Zbl 0926.62080, MR 1661513
Reference: [14] Hamilton J. D.: Time Series Analysis.Princeton University Press, Princeton 1994 Zbl 0831.62061, MR 1278033
Reference: [15] Loève M.: Probability Theory.Second edition. Van Nostrand, Princeton 1955 Zbl 0385.60001, MR 0203748
Reference: [16] Rényi A.: Probability Theory.Akadémiai Kiadó, Budapest 1970
Reference: [17] Sondhi M. M.: Random processes with specified spectral density and first–order probability density.Bell System Technical J. 62 (1983), 679–701 10.1002/j.1538-7305.1983.tb04411.x
Reference: [18] Štěpán J.: Teorie pravděpodobnosti.Academia, Praha 1987
Reference: [19] Tong H.: Non–linear Time Series.Clarendon Press, Oxford 1990 Zbl 0835.62076, MR 1079320
Reference: [20] Research, Wolfram, Inc.: Mathematica, Version 2.2. Wolfram Research, Inc., Champaign, Illinois 1994
.

Files

Files Size Format View
Kybernetika_36-2000-3_3.pdf 1.230Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo