Previous |  Up |  Next

Article

Title: An interpolation problem for multivariate stationary sequences (English)
Author: Klotz, Lutz
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 3
Year: 2000
Pages: [321]-327
Summary lang: English
.
Category: math
.
Summary: Let {\boldmath$X$} and {\boldmath$Y$} be stationarily cross-correlated multivariate stationary sequences. Assume that all values of {\boldmath$Y$} and all but one values of {\boldmath$X$} are known. We determine the best linear interpolation of the unknown value on the basis of the known values and derive a formula for the interpolation error matrix. Our assertions generalize a result of Budinský [1]. (English)
Keyword: linear interpolation
MSC: 60G10
MSC: 60G25
MSC: 62H20
MSC: 62M20
MSC: 62M99
idZBL: Zbl 1243.62124
idMR: MR1773507
.
Date available: 2009-09-24T19:33:11Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135353
.
Reference: [1] Budinský P.: Improvement of interpolation under additional information.In: Proceedings of the 4th Prague Symposium on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1989, pp. 159–167 Zbl 0711.62083, MR 1051435
Reference: [2] Makagon A.: Interpolation error operator for Hilbert space valued stationary stochastic processes.Probab. Math. Statist. 4 (1984), 57–65 Zbl 0575.60040, MR 0764330
Reference: [3] Makagon A., Weron A.: $q$-variate minimal stationary processes.Studia Math. 59 (1976), 41–52 Zbl 0412.60013, MR 0428419
Reference: [4] Pringle R. M., Rayner A. A.: Generalized Inverse Matrices with Applications to Statistics.Griffin, London 1971 Zbl 0231.15008, MR 0314860
Reference: [5] Rozanov, Yu. A.: Stationary Random Processes (in Russian).Fizmatgiz, Moscow 1963
Reference: [6] Salehi H.: The Hellinger square–integrability of matrix–valued measures with respect to a non–negative hermitian measure.Ark. Mat. 7 (1967), 299–303 MR 0233951, 10.1007/BF02591023
Reference: [7] Salehi H.: Application of the Hellinger integrals to $q$-variate stationary stochastic processes.Ark. Mat. 7 (1967), 305–311 MR 0236991, 10.1007/BF02591024
Reference: [8] Weron A.: On characterizations of interpolable and minimal stationary processes.Studia Math. 49 (1974), 165–183 Zbl 0303.60034, MR 0341587
.

Files

Files Size Format View
Kybernetika_36-2000-3_4.pdf 832.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo