Previous |  Up |  Next

Article

Title: Log-periodogram regression in asymmetric long memory (English)
Author: Arteche, Josu
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 4
Year: 2000
Pages: [415]-435
Summary lang: English
.
Category: math
.
Summary: The long memory property of a time series has long been studied and several estimates of the memory or persistence parameter at zero frequency, where the spectral density function is symmetric, are now available. Perhaps the most popular is the log periodogram regression introduced by Geweke and Porter–Hudak [gewe]. In this paper we analyse the asymptotic properties of this estimate in the seasonal or cyclical long memory case allowing for asymmetric spectral poles or zeros. Consistency and asymptotic normality are obtained. Finite sample behaviour is evaluated via a Monte Carlo analysis. (English)
Keyword: time series model
Keyword: asymptotic properties
MSC: 62F12
MSC: 62M10
MSC: 62M15
MSC: 65C05
idZBL: Zbl 1248.62143
idMR: MR1830647
.
Date available: 2009-09-24T19:34:03Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135361
.
Reference: [1] Arteche J.: Gaussian semiparametric estimation in seasonal/cyclical long memory time series.Kybernetika 36 (2000), 279–310 MR 1773505
Reference: [2] Arteche J., Robinson P. M.: Seasonal and cyclical long memory.In: Asymptotics, Nonparametrics and Time Series (S. Ghosh ed.), Marcel Dekker, New York 1999, pp. 115–148 Zbl 1069.62539, MR 1724697
Reference: [3] Carlin J. B., Dempster A. P.: Sensitivity analysis of seasonal adjustments: empirical case studies.J. Amer. Statist. Assoc. 84 (1989), 6–20 MR 0999663, 10.1080/01621459.1989.10478729
Reference: [4] Geweke J., Porter–Hudak S.: The estimation and application of long-memory time series models.J. Time Ser. Anal. 4 (1983), 221–238 Zbl 0534.62062, MR 0738585, 10.1111/j.1467-9892.1983.tb00371.x
Reference: [5] Gradshteyn J. S., Ryzhik I. W.: Table of Integrals, Series and Products.Academic Press, Florida 1980 Zbl 1208.65001
Reference: [6] Gray H. L., Zhang N. F., Woodward W. A.: On generalized fractional processes.J. Time Ser. Anal. 10 (1989), 233–257 Zbl 0685.62075, MR 1028940, 10.1111/j.1467-9892.1989.tb00026.x
Reference: [7] Hassler U.: Regression of spectral estimators with fractionally integrated time series.J. Time Ser. Anal. 14 (1993), 369–380 Zbl 0782.62085, MR 1234580, 10.1111/j.1467-9892.1993.tb00151.x
Reference: [8] Hassler U.: Corrigendum: The periodogram regression.J. Time Ser. Anal. 14 (1993), 549 MR 1243582, 10.1111/j.1467-9892.1993.tb00164.x
Reference: [9] Hassler U.: (Mis)specification of long-memory in seasonal time series.J. Time Ser. Anal. 15 (1994), 19–30 Zbl 0794.62059, MR 1256854, 10.1111/j.1467-9892.1994.tb00174.x
Reference: [10] Hurvich C. M., Beltrao K. I.: Asymptotics for the low frequency ordinates of the periodogram of long memory time series.J. Time Ser. Anal. 14 (1993), 455–472 MR 1243575, 10.1111/j.1467-9892.1993.tb00157.x
Reference: [11] Hurvich C. M., Ray B. K.: Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes.J. Time Ser. Anal. 16 (1995), 17–42 Zbl 0813.62081, MR 1323616, 10.1111/j.1467-9892.1995.tb00221.x
Reference: [12] Johnson N. L., Kotz S.: Continuous Univariate Distributions – I.Wiley, New York 1970
Reference: [13] Jonas A. J.: Persistent Memory Random Processes.Ph.D. Thesis. Department of Statistics, Harvard University, 1983
Reference: [14] Loève M.: Probability Theory I.Springer, Berlin 1977 MR 0651017
Reference: [15] Ooms M.: Flexible seasonal long-memory and economic time series.Preprint, Erasmus University Rotterdam 1995
Reference: [16] Robinson P. M.: Efficient tests of non-stationary hypothesis.J. Amer. Statist. Assoc. 89 (1994), 1420–1437 MR 1310232, 10.1080/01621459.1994.10476881
Reference: [17] Robinson P. M.: Rates of convergence and optimal spectral bandwith for long-range dependence.Probab. Theory Related Fields 99 (1994), 443–473 MR 1283121, 10.1007/BF01199901
Reference: [18] Robinson P. M.: Log-periodogram regression of time series with long-range dependence.Ann. Statist. 23 (1995), 1048–1072 Zbl 0838.62085, MR 1345214, 10.1214/aos/1176324636
Reference: [20] Velasco C.: Non-stationary log-periodogram regression.J. Econometrics 91 (1999), 325–371 Zbl 1041.62533, MR 1703950, 10.1016/S0304-4076(98)00080-3
Reference: [21] Zygmund A.: Trigonometric Series.Cambridge University Press, Cambridge U.K. 1977 Zbl 1084.42003, MR 0617944
.

Files

Files Size Format View
Kybernetika_36-2000-4_3.pdf 3.311Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo