Previous |  Up |  Next

Article

Title: Asymptotic distribution of the conditional regret risk for selecting good exponential populations (English)
Author: Gupta, Shanti S.
Author: Liese, Friedrich
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 5
Year: 2000
Pages: [571]-588
Summary lang: English
.
Category: math
.
Summary: In this paper empirical Bayes methods are applied to construct selection rules for the selection of all good exponential distributions. We modify the selection rule introduced and studied by Gupta and Liang [10] who proved that the regret risk converges to zero with rate $O(n^{-\lambda /2}),0<\lambda \le 2$. The aim of this paper is to study the asymptotic behavior of the conditional regret risk ${\cal R}_{n}$. It is shown that $n{\cal R}_{n}$ tends in distribution to a linear combination of independent $\chi ^{2}$-distributed random variables. As an application we give a large sample approximation for the probability that the conditional regret risk exceeds the Bayes risk by a given $\varepsilon >0.$ This probability characterizes the information contained in the historical data. (English)
Keyword: Bayes method
MSC: 62C10
MSC: 62C12
MSC: 62E20
MSC: 62F07
idZBL: Zbl 1243.62006
idMR: MR1882795
.
Date available: 2009-09-24T19:35:17Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135372
.
Reference: [1] Balakrishnan N., (eds.) A. P. Basu: The Exponential Distribution: Theory, Method and Applications.Gordon and Breach Publishers. Langliorne, Pennsylvania 1995 MR 1655093
Reference: [2] Deely J. J.: Multiple Decision Procedures from Empirical Bayes Approach.Ph.D. Thesis (Mimeo. Ser. No. 45). Dept. Statist., Purdue Univ., West Lafayette, Ind. 1965 MR 2615366
Reference: [3] Dvoretzky A., Kiefer, J., Wolfowitz J.: Asymptotic minimax character of the sample distribution functions and of the classical multinomial estimator.Ann. Math. Statist. 27 (1956), 642–669 MR 0083864, 10.1214/aoms/1177728174
Reference: [4] Gupta S. S., Panchapakesan S.: Subset selection procedures: review and assessment.Amer. J. Management Math. Sci. 5 (1985), 235–311 Zbl 0633.62024, MR 0859941
Reference: [5] Gupta S. S., Liang T.: Empirical Bayes rules for selecting the best binomial population.In: Statistical Decision Theory and Related Topics IV (S. S. Gupta and J. O. Berger, eds.), Vol. 1. Springer–Verlag, Berlin 1986, pp. 213–224 MR 0927102
Reference: [6] Gupta S. S., Liang T.: On empirical Bayes selection rules for sampling inspection.J. Statist. Plann. Inference 38 (1994), 43–64 Zbl 0797.62004, MR 1256847, 10.1016/0378-3758(92)00154-V
Reference: [7] Gupta S. S., Liang, T., Rau R.-B.: Empirical Bayes two stage procedures for selecting the best Bernoulli population compared with a control.In: Statistical Decision Theory and Related Topics V. (S. S. Gupta and J. O. Berger, eds.), Springer–Verlag, Berlin 1994, pp. 277–292 Zbl 0788.62010, MR 1286308
Reference: [8] Gupta S. S., Liang, T., Rau R.-B.: Empirical Bayes rules for selecting the best normal population compared with a control.Statist. Decision 12 (1994), 125–147 Zbl 0804.62009, MR 1292660
Reference: [10] Gupta S. S., Liang T.: Selecting good exponential populations compared with a control: nonparametric empirical Bayes approach.Sankhya, Ser. B 61 (1999), 289–304 MR 1734172
Reference: [11] Ibragimov I. A., Has’minskii R. Z.: Statistical Estimation: Asymptotic Theory.Springer, New York 1981 MR 0620321
Reference: [12] Johnson N. L., Kotz S., Balakrishnan N.: Continuous Univariate Distributions, Vol.1. Second edition. Wiley, New York 1994 Zbl 0821.62001, MR 1299979
Reference: [13] Jurečková J., Sen P. K.: Robust Statistical Procedures, Asymptotics and Interrelations.Wiley, New York 1996 Zbl 0862.62032, MR 1387346
Reference: [14] Liese F., Vajda I.: Consistency of M-estimates in general regression models.J. Multivariate Anal. 50 (1994), 93–114 Zbl 0872.62071, MR 1292610, 10.1006/jmva.1994.1036
Reference: [15] Pfanzagl J.: On measurability and consistency of minimum contrast estimators.Metrika 14 (1969), 249–272 10.1007/BF02613654
Reference: [16] Pollard D.: Asymptotics for least absolute deviation regression estimators.Econometric Theory 7 (1991), 186–199 MR 1128411, 10.1017/S0266466600004394
Reference: [17] Robbins H.: An empirical Bayes approach to statistics.In: Proc. Third Berkeley Symp., Math. Statist. Probab. 1, Univ. of California Press 1956, pp. 157–163 Zbl 0074.35302, MR 0084919
Reference: [18] Shorack G. R., Wellner J. A.: Empirical Processes with Applications to Statistics.Wiley, New York 1986 Zbl 1171.62057, MR 0838963
Reference: [19] Wald A.: Note on the consistency of the maximum likelihood estimate.Ann. Math. Statist. 20 (1949), 595–601 Zbl 0034.22902, MR 0032169, 10.1214/aoms/1177729952
Reference: [20] Vaart A. W. van der, Wellner J. A.: Weak Convergence and Empirical Processes (Springer Series in Statistics).Springer–Verlag, Berlin 1996 MR 1385671
.

Files

Files Size Format View
Kybernetika_36-2000-5_5.pdf 2.318Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo