Title:
|
Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences (English) |
Author:
|
Landaburu, Elena |
Author:
|
Pardo, Leandro |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
36 |
Issue:
|
5 |
Year:
|
2000 |
Pages:
|
[589]-602 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The aim of the paper is to present a test of goodness of fit with weigths in the classes based on weighted $\left( h,\phi \right) $-divergences. This family of divergences generalizes in some sense the previous weighted divergences studied by Frank et al [frank] and Kapur [kapur]. The weighted $\left( h,\phi \right)$-divergence between an empirical distribution and a fixed distribution is here investigated for large simple random samples, and the asymptotic distributions are shown to be either normal or equal to the distribution of a linear combination of independent chi-square variables. Some approximations to the linear combination of independent chi-square variables are presented. (English) |
MSC:
|
60E05 |
MSC:
|
62B10 |
MSC:
|
62E10 |
MSC:
|
62E20 |
MSC:
|
62G10 |
idZBL:
|
Zbl 1244.62065 |
idMR:
|
MR1882796 |
. |
Date available:
|
2009-09-24T19:35:24Z |
Last updated:
|
2015-03-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135373 |
. |
Reference:
|
[1] Csiszár I.: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten.Publications of the Mathematical Institute of Hungarian Academy of Sciences Ser A. 8 (1963), 85–108 MR 0164374 |
Reference:
|
[2] Dik J. J., Gunst M. C. M. de: The distribution of general quadratic forms in normal variables.Statistica Neerlandica 39 (1985), 14–26 Zbl 0591.62043, MR 0801686, 10.1111/j.1467-9574.1985.tb01121.x |
Reference:
|
[3] Eckler A. R.: A survey of coverage problems associated with point and area targets.Technometrics 11 (1969), 561–589 Zbl 0181.22105, 10.1080/00401706.1969.10490712 |
Reference:
|
[4] Ferguson T. S.: A Course in Large Sample Theory.Chapman & Hall, London 1996 Zbl 0871.62002, MR 1699953 |
Reference:
|
[5] Frank O., Menéndez M. L., Pardo L.: Asymptotic distributions of weighted divergence between discrete distributions.Comm. Statist. – Theory Methods 27 (1998), 4, 867–885 Zbl 0902.62025, MR 1613493, 10.1080/03610929808832133 |
Reference:
|
[6] Fraser D. A. S.: Non–parametrics Methods in Statistics.Wiley, New York 1957 MR 0083868 |
Reference:
|
[7] Guiaşu S.: Grouping data by using the weighted entropy.J. Statist. Plann. Inference 15 (1986), 63–69 Zbl 0621.62008, MR 0864945, 10.1016/0378-3758(86)90085-6 |
Reference:
|
[8] Gupta S. S.: Bibliography on the multivariate normal integrals and related topics.Ann. Math. Statist. 34 (1963), 829–838 MR 0152069, 10.1214/aoms/1177704005 |
Reference:
|
[9] Jensen D. R., Solomon H.: A Gaussian approximation to the distribution of a definite quadratic form.J. Amer. Statist. Assoc. 67 (1972), 340, 898–902 Zbl 0254.62013 |
Reference:
|
[10] Johnson N. L., Kotz S.: Tables of distributions of positive definite quadratic forms in central normal variables.Sankhya, Ser. B 30 (1968), 303–314 MR 0256492 |
Reference:
|
[11] Kapur J. N.: Measures of Information and their Applications.Wiley, New York 1994 Zbl 0925.94073 |
Reference:
|
[12] Kotz S., Johnson N. M., Boid D. W.: Series representation of quadratic forms in normal variables I.Central case. Annals Math. Statist. 38 (1967), 823–837 MR 0211510, 10.1214/aoms/1177698877 |
Reference:
|
[13] Liese F., Vajda I.: Convex Statistical Distances.Teubner, Leipzig 1987 Zbl 0656.62004, MR 0926905 |
Reference:
|
[14] Longo G.: Quantitative and Qualitative Measure of Information.Springer, New York 1970 MR 0351627 |
Reference:
|
[15] Menéndez M. L., Morales D., Pardo L., Salicrú M.: Asymptotic behaviour and statistical applications of divergence measures in multinomial populations: A unified study.Statistical Papers 36 (1995), 1–29 Zbl 0846.62004, MR 1334081, 10.1007/BF02926015 |
Reference:
|
[16] Menéndez M. L., Morales D., Pardo L., Vajda I.: Approximations to powers of $\varphi $-disparity goodness of fit tests.Submitted |
Reference:
|
[17] Modarres R., Jernigan R. W.: Testing the equality of correlation matrices.Comm. Statist. – Theory Methods 21 (1992), 2107–2125 Zbl 0777.62059, MR 1186048, 10.1080/03610929208830901 |
Reference:
|
[18] Rao J. N. K., Scott A. J.: The analysis of categorical data from complex sample surveys: Chi-squared tests for goodness of fit and independence in two-way tables.J. Amer. Statist. Assoc. 76 (1981), 221–230 Zbl 0473.62010, MR 0624328, 10.1080/01621459.1981.10477633 |
Reference:
|
[19] Solomon H.: Distribution of Quadratic Forms – Tables and Applications.Applied Mathematics and Statistics Laboratories, Technical Report 45, Stanford University, Stanford, Calif. 1960 |
Reference:
|
[20] Taneja C. T.: On the mean and the variance of estimates of Kullback information and relative useful information measures.Apl. Mat. 30 (1985), 166–175 Zbl 0581.94004, MR 0789858 |
Reference:
|
[21] Vajda I.: Theory of Statistical Inference and Information.Kluwer Academic Publishers, Dordrecht 1989 Zbl 0711.62002 |
Reference:
|
[22] Zografos K., Ferentinos K., Papaioannou: $\varphi $ -divergence statistics: sampling properties and multinomial goodness of fit and divergence tests.Comm. Statist. – Theory Methods 19 (1990), 5, 1785-1802 MR 1075502, 10.1080/03610929008830290 |
. |