Previous |  Up |  Next

Article

Title: Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences (English)
Author: Landaburu, Elena
Author: Pardo, Leandro
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 5
Year: 2000
Pages: [589]-602
Summary lang: English
.
Category: math
.
Summary: The aim of the paper is to present a test of goodness of fit with weigths in the classes based on weighted $\left( h,\phi \right) $-divergences. This family of divergences generalizes in some sense the previous weighted divergences studied by Frank et al [frank] and Kapur [kapur]. The weighted $\left( h,\phi \right)$-divergence between an empirical distribution and a fixed distribution is here investigated for large simple random samples, and the asymptotic distributions are shown to be either normal or equal to the distribution of a linear combination of independent chi-square variables. Some approximations to the linear combination of independent chi-square variables are presented. (English)
MSC: 60E05
MSC: 62B10
MSC: 62E10
MSC: 62E20
MSC: 62G10
idZBL: Zbl 1244.62065
idMR: MR1882796
.
Date available: 2009-09-24T19:35:24Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135373
.
Reference: [1] Csiszár I.: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten.Publications of the Mathematical Institute of Hungarian Academy of Sciences Ser A. 8 (1963), 85–108 MR 0164374
Reference: [2] Dik J. J., Gunst M. C. M. de: The distribution of general quadratic forms in normal variables.Statistica Neerlandica 39 (1985), 14–26 Zbl 0591.62043, MR 0801686, 10.1111/j.1467-9574.1985.tb01121.x
Reference: [3] Eckler A. R.: A survey of coverage problems associated with point and area targets.Technometrics 11 (1969), 561–589 Zbl 0181.22105, 10.1080/00401706.1969.10490712
Reference: [4] Ferguson T. S.: A Course in Large Sample Theory.Chapman & Hall, London 1996 Zbl 0871.62002, MR 1699953
Reference: [5] Frank O., Menéndez M. L., Pardo L.: Asymptotic distributions of weighted divergence between discrete distributions.Comm. Statist. – Theory Methods 27 (1998), 4, 867–885 Zbl 0902.62025, MR 1613493, 10.1080/03610929808832133
Reference: [6] Fraser D. A. S.: Non–parametrics Methods in Statistics.Wiley, New York 1957 MR 0083868
Reference: [7] Guiaşu S.: Grouping data by using the weighted entropy.J. Statist. Plann. Inference 15 (1986), 63–69 Zbl 0621.62008, MR 0864945, 10.1016/0378-3758(86)90085-6
Reference: [8] Gupta S. S.: Bibliography on the multivariate normal integrals and related topics.Ann. Math. Statist. 34 (1963), 829–838 MR 0152069, 10.1214/aoms/1177704005
Reference: [9] Jensen D. R., Solomon H.: A Gaussian approximation to the distribution of a definite quadratic form.J. Amer. Statist. Assoc. 67 (1972), 340, 898–902 Zbl 0254.62013
Reference: [10] Johnson N. L., Kotz S.: Tables of distributions of positive definite quadratic forms in central normal variables.Sankhya, Ser. B 30 (1968), 303–314 MR 0256492
Reference: [11] Kapur J. N.: Measures of Information and their Applications.Wiley, New York 1994 Zbl 0925.94073
Reference: [12] Kotz S., Johnson N. M., Boid D. W.: Series representation of quadratic forms in normal variables I.Central case. Annals Math. Statist. 38 (1967), 823–837 MR 0211510, 10.1214/aoms/1177698877
Reference: [13] Liese F., Vajda I.: Convex Statistical Distances.Teubner, Leipzig 1987 Zbl 0656.62004, MR 0926905
Reference: [14] Longo G.: Quantitative and Qualitative Measure of Information.Springer, New York 1970 MR 0351627
Reference: [15] Menéndez M. L., Morales D., Pardo L., Salicrú M.: Asymptotic behaviour and statistical applications of divergence measures in multinomial populations: A unified study.Statistical Papers 36 (1995), 1–29 Zbl 0846.62004, MR 1334081, 10.1007/BF02926015
Reference: [16] Menéndez M. L., Morales D., Pardo L., Vajda I.: Approximations to powers of $\varphi $-disparity goodness of fit tests.Submitted
Reference: [17] Modarres R., Jernigan R. W.: Testing the equality of correlation matrices.Comm. Statist. – Theory Methods 21 (1992), 2107–2125 Zbl 0777.62059, MR 1186048, 10.1080/03610929208830901
Reference: [18] Rao J. N. K., Scott A. J.: The analysis of categorical data from complex sample surveys: Chi-squared tests for goodness of fit and independence in two-way tables.J. Amer. Statist. Assoc. 76 (1981), 221–230 Zbl 0473.62010, MR 0624328, 10.1080/01621459.1981.10477633
Reference: [19] Solomon H.: Distribution of Quadratic Forms – Tables and Applications.Applied Mathematics and Statistics Laboratories, Technical Report 45, Stanford University, Stanford, Calif. 1960
Reference: [20] Taneja C. T.: On the mean and the variance of estimates of Kullback information and relative useful information measures.Apl. Mat. 30 (1985), 166–175 Zbl 0581.94004, MR 0789858
Reference: [21] Vajda I.: Theory of Statistical Inference and Information.Kluwer Academic Publishers, Dordrecht 1989 Zbl 0711.62002
Reference: [22] Zografos K., Ferentinos K., Papaioannou: $\varphi $ -divergence statistics: sampling properties and multinomial goodness of fit and divergence tests.Comm. Statist. – Theory Methods 19 (1990), 5, 1785-1802 MR 1075502, 10.1080/03610929008830290
.

Files

Files Size Format View
Kybernetika_36-2000-5_6.pdf 1.839Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo