Previous |  Up |  Next

Article

Title: Fuzzy decision trees to help flexible querying (English)
Author: Marsala, Christophe
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 6
Year: 2000
Pages: [689]-705
Summary lang: English
.
Category: math
.
Summary: Fuzzy data mining by means of the fuzzy decision tree method enables the construction of a set of fuzzy rules. Such a rule set can be associated with a database as a knowledge base that can be used to help answering frequent queries. In this paper, a study is done that enables us to show that classification by means of a fuzzy decision tree is equivalent to the generalized modus ponens. Moreover, it is shown that the decision taken by means of a fuzzy decision tree is more stable when observation evolves. (English)
Keyword: fuzzy data mining
Keyword: fuzzy decision trees
MSC: 03B52
MSC: 68P05
MSC: 68P15
MSC: 68P20
MSC: 68T05
MSC: 68T37
idZBL: Zbl 1249.68260
.
Date available: 2009-09-24T19:36:21Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135381
.
Reference: [1] Agrawal R., Imielinski, T., Swami A.: Mining association rules between sets of items in large databases.In: Proc. ACM-SIGMOD Internat. Conference on Management of Data, Washington DC 1993, pp. 207–216
Reference: [2] Agrawal R., Imielinski, T., Swami A.: Database mining: A performance perspective.IEEE Trans. on Knowledge and Data Engineering 5 (1993), 6, 914–925 10.1109/69.250074
Reference: [3] Bouchon–Meunier B.: La logique floue et ses applications.Collection Vie Artificielle. Addison Wesley France, 1995
Reference: [4] Bouchon–Meunier B., Rifqi, M., Bothorel S.: Towards general measures of comparison of objects.Fuzzy Sets and Systems 84 (1996), 2, 143–153 Zbl 0917.94028, MR 1416692, 10.1016/0165-0114(96)00067-X
Reference: [5] Bouchon–Meunier B., Marsala, C., Ramdani M.: Learning from imperfect data.In: Fuzzy Information Engineering: a Guided Tour of Applications (D. Dubois, H. Prade, and R. R. Yager, eds.), Wiley, New York 1997, pp. 139–148
Reference: [6] Bouchon–Meunier B., Marsala C.: Learning fuzzy decision rules.In: Fuzzy Sets in Approximate Reasoning and Information Systems, volume 3 of Handbook of Fuzzy Sets, chapter 4 (D. Dubois J. Bezdek and H. Prade, eds.), Kluwer, Dordrecht 1999 Zbl 0952.68124, MR 1799005
Reference: [7] Chen, I-M. A.: Query answering using discovered rules.In: Proc. 12th Internat. Conference on Data Engineering (S. Y. W. Su, ed.), IEEE Computer Society Press, New Orleans 1996, pp. 402–411
Reference: [8] Cios K. J., Pedrycz, W., Swiniarski R. W.: Data Mining – Methods for Knowledge Discovery.(Engineering and Computer Science.) Kluwer, Dordrecht 1998 Zbl 0912.68199
Reference: [9] Driankov D., Hellendoorn, H., Reinfrank M.: An Introduction to Fuzzy Control.Springer Verlag, Berlin 1993 Zbl 0851.93001
Reference: [10] Dubois D., Prade H.: A unifying view of comparison indices in a fuzzy set-theoretic framework.In: Fuzzy Set and Possibility Theory (R. R. Yager, ed.), Pergamon Press 1982, pp. 3–13
Reference: [11] Dubois D., Prade, H., Testemale C.: Weighted fuzzy pattern matching.Fuzzy Sets and Systems 28 (1988), 3, 313–331 Zbl 0658.94026, MR 0976671, 10.1016/0165-0114(88)90038-3
Reference: [12] Dubois D., Mo, X., Prade H.: Fuzzy-valued variables and fuzzy discrimination trees in pattern-directed inference.In: Eighth International Congress of Cybernetics and Systems, New York 1990
Reference: [13] Dubois D., Mo, X., Prade H.: Fuzzy discrimination trees.In: Fuzzy Engineering toward Human Friendly Systems. Proc. Internat. Fuzzy Engineering Symposium IFES’91, volume 1, Yokohama 1991, pp. 250–260 MR 1221133
Reference: [14] Fayyad U. M., Piatetsky–Shapiro, G., Smyth P.: From data mining to knowledge discovery in databases.AI Magazine 17 (1996), 3, 37–54
Reference: [15] Hu X., Cercone N.: Mining knowledge rules from databases: A rough set approach.In: Proc. 12th Internat. Conference on Data Engineering (S. Y. W. Su, ed.), IEEE Computer Society Press, New Orleans 1996, pp. 96–105
Reference: [16] Lent B., Swami, A., Widom J.: Clustering association rules.In: Proc. 13th Internat. Conference on Data Engineering, IEEE Computer Society Press, Birmingham 1997, pp. 220–231
Reference: [17] Marsala C., Bouchon-Meunier B.: Fuzzy partioning using mathematical morphology in a learning scheme.In: Proc. 5th IEEE Internat. Conference on Fuzzy Systems, volume 2, New Orleans 1996, pp. 1512–1517
Reference: [18] Marsala C.: Apprentissage inductif en présence de données imprécises: construction et utilisation d’arbres de décision flous.PhD Thesis, Université Pierre et Marie Curie, Paris 1998
Reference: [19] Marsala C.: Application of fuzzy rule induction to data mining.In: Proc. 3rd Internat. Conference FQAS’98 – LNAI 1495 (T. Andreasen, H. Christiansen, and H. L. Larsen, eds.), Springers, Roskilde 1998, pp. 260–271
Reference: [20] Marsala C., Ramdani M., Toullabi, M., Zakaria D.: Fuzzy decision trees applied to the recognition of odors.In: Proc. IPMU’98 Conference, volume 1, Editions EDK, Paris 1998, pp. 532–539
Reference: [21] Marsala C., Bigolin N. Martini: Spatial data mining with fuzzy decision trees.In: Proc. Internat. Conference on Data Mining (N. F. F. Ebecken, ed.), WIT Press, Rio de Janeiro 1998, pp. 235–248
Reference: [22] Marsala C., Bouchon–Meunier B.: An adaptable system to construct fuzzy decision trees.In: Proc. NAFIPS’99 (North American Fuzzy Information Processing Society), New York 1999, pp. 223–227
Reference: [23] Marsala C., Bouchon–Meunier, B., Ramer A.: Hierarchical model for discrimination measures.In: Proc. IFSA’99 World Congress, Taiwan 1999, pp. 339–343
Reference: [24] Mo X.: Compilation de bases de connaissances avec prise en compte de l’imprécision et de l’incertitude.PhD Thesis, Université Paul Sabatier, Toulouse 1990
Reference: [25] Nguyen H. T., Kreinovitch, V., Tolbert D.: On robustness of fuzzy logics.In: Proc. FUZZ-IEEE Internat. Conference, volume 1, San Francisco 1993, pp. 543–547
Reference: [26] Nguyen H. T., Kreinovitch, V., Tolbert D.: A measure of average sensitivity for fuzzy logics.Internat. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 2 (1994), 4, 361–375 MR 1309606, 10.1142/S0218488594000304
Reference: [27] Pedrycz, Yubazaki, Ohtani,, Hirota: Robustness and sensitivity in fuzzy computational structures.In: Proc. IFSA’91 Conference, Brussels 1991, pp. 197–200
Reference: [28] Py J.-J.: Éléments d’étude de la sensibilité des modèles flous.Université Paris IX, 1997
Reference: [29] Quinlan J. R.: Induction of decision trees.Machine Learning 1 (1986), 1, 86–106 10.1007/BF00116251
Reference: [30] Quinlan J. R.: Improved use of continuous attributes in C4.5. J. Artificial Intelligence Research 4 (1996), 3, 77–90 Zbl 0900.68112
Reference: [31] Ramdani M.: Système d’Induction Formelle à Base de Connaissances Imprécises.PhD Thesis, Université P. et M. Curie, Paris 1994
Reference: [32] Rifqi M.: Mesures de comparaison, typicalité et classification d’objets flous : théorie et pratique.PhD Thesis, Université P. et M. Curie, Paris 1996
Reference: [33] Shekhar S., Hamidzadeh B., Kohli, A., Coyle M.: Learning transformation rules for semantic query optimization: A data-driven approach.IEEE Trans. on Knowledge and Data Engineering 5 (1993), 6, 950–964 10.1109/69.250077
Reference: [34] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning, part 3.Inform. Sci. 9 (1976), 43–80 MR 0386371, 10.1016/0020-0255(75)90017-1
Reference: [35] Zadeh L. A.: The role of fuzzy logic in the management of uncertainty in expert systems.Fuzzy Sets and Systems 11 (1983), 199–227.Reprinted in: Fuzzy Sets and Applications: selected papers by L. A. Zadeh (R. R. Yager, S. Ovchinnikov, R. M. Tong and H. T. Nguyen, eds.), pp. 413–441 Zbl 0553.68049, MR 0727205
.

Files

Files Size Format View
Kybernetika_36-2000-6_6.pdf 2.454Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo