Title:
|
Fuzzy decision trees to help flexible querying (English) |
Author:
|
Marsala, Christophe |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
36 |
Issue:
|
6 |
Year:
|
2000 |
Pages:
|
[689]-705 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Fuzzy data mining by means of the fuzzy decision tree method enables the construction of a set of fuzzy rules. Such a rule set can be associated with a database as a knowledge base that can be used to help answering frequent queries. In this paper, a study is done that enables us to show that classification by means of a fuzzy decision tree is equivalent to the generalized modus ponens. Moreover, it is shown that the decision taken by means of a fuzzy decision tree is more stable when observation evolves. (English) |
Keyword:
|
fuzzy data mining |
Keyword:
|
fuzzy decision trees |
MSC:
|
03B52 |
MSC:
|
68P05 |
MSC:
|
68P15 |
MSC:
|
68P20 |
MSC:
|
68T05 |
MSC:
|
68T37 |
idZBL:
|
Zbl 1249.68260 |
. |
Date available:
|
2009-09-24T19:36:21Z |
Last updated:
|
2015-03-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135381 |
. |
Reference:
|
[1] Agrawal R., Imielinski, T., Swami A.: Mining association rules between sets of items in large databases.In: Proc. ACM-SIGMOD Internat. Conference on Management of Data, Washington DC 1993, pp. 207–216 |
Reference:
|
[2] Agrawal R., Imielinski, T., Swami A.: Database mining: A performance perspective.IEEE Trans. on Knowledge and Data Engineering 5 (1993), 6, 914–925 10.1109/69.250074 |
Reference:
|
[3] Bouchon–Meunier B.: La logique floue et ses applications.Collection Vie Artificielle. Addison Wesley France, 1995 |
Reference:
|
[4] Bouchon–Meunier B., Rifqi, M., Bothorel S.: Towards general measures of comparison of objects.Fuzzy Sets and Systems 84 (1996), 2, 143–153 Zbl 0917.94028, MR 1416692, 10.1016/0165-0114(96)00067-X |
Reference:
|
[5] Bouchon–Meunier B., Marsala, C., Ramdani M.: Learning from imperfect data.In: Fuzzy Information Engineering: a Guided Tour of Applications (D. Dubois, H. Prade, and R. R. Yager, eds.), Wiley, New York 1997, pp. 139–148 |
Reference:
|
[6] Bouchon–Meunier B., Marsala C.: Learning fuzzy decision rules.In: Fuzzy Sets in Approximate Reasoning and Information Systems, volume 3 of Handbook of Fuzzy Sets, chapter 4 (D. Dubois J. Bezdek and H. Prade, eds.), Kluwer, Dordrecht 1999 Zbl 0952.68124, MR 1799005 |
Reference:
|
[7] Chen, I-M. A.: Query answering using discovered rules.In: Proc. 12th Internat. Conference on Data Engineering (S. Y. W. Su, ed.), IEEE Computer Society Press, New Orleans 1996, pp. 402–411 |
Reference:
|
[8] Cios K. J., Pedrycz, W., Swiniarski R. W.: Data Mining – Methods for Knowledge Discovery.(Engineering and Computer Science.) Kluwer, Dordrecht 1998 Zbl 0912.68199 |
Reference:
|
[9] Driankov D., Hellendoorn, H., Reinfrank M.: An Introduction to Fuzzy Control.Springer Verlag, Berlin 1993 Zbl 0851.93001 |
Reference:
|
[10] Dubois D., Prade H.: A unifying view of comparison indices in a fuzzy set-theoretic framework.In: Fuzzy Set and Possibility Theory (R. R. Yager, ed.), Pergamon Press 1982, pp. 3–13 |
Reference:
|
[11] Dubois D., Prade, H., Testemale C.: Weighted fuzzy pattern matching.Fuzzy Sets and Systems 28 (1988), 3, 313–331 Zbl 0658.94026, MR 0976671, 10.1016/0165-0114(88)90038-3 |
Reference:
|
[12] Dubois D., Mo, X., Prade H.: Fuzzy-valued variables and fuzzy discrimination trees in pattern-directed inference.In: Eighth International Congress of Cybernetics and Systems, New York 1990 |
Reference:
|
[13] Dubois D., Mo, X., Prade H.: Fuzzy discrimination trees.In: Fuzzy Engineering toward Human Friendly Systems. Proc. Internat. Fuzzy Engineering Symposium IFES’91, volume 1, Yokohama 1991, pp. 250–260 MR 1221133 |
Reference:
|
[14] Fayyad U. M., Piatetsky–Shapiro, G., Smyth P.: From data mining to knowledge discovery in databases.AI Magazine 17 (1996), 3, 37–54 |
Reference:
|
[15] Hu X., Cercone N.: Mining knowledge rules from databases: A rough set approach.In: Proc. 12th Internat. Conference on Data Engineering (S. Y. W. Su, ed.), IEEE Computer Society Press, New Orleans 1996, pp. 96–105 |
Reference:
|
[16] Lent B., Swami, A., Widom J.: Clustering association rules.In: Proc. 13th Internat. Conference on Data Engineering, IEEE Computer Society Press, Birmingham 1997, pp. 220–231 |
Reference:
|
[17] Marsala C., Bouchon-Meunier B.: Fuzzy partioning using mathematical morphology in a learning scheme.In: Proc. 5th IEEE Internat. Conference on Fuzzy Systems, volume 2, New Orleans 1996, pp. 1512–1517 |
Reference:
|
[18] Marsala C.: Apprentissage inductif en présence de données imprécises: construction et utilisation d’arbres de décision flous.PhD Thesis, Université Pierre et Marie Curie, Paris 1998 |
Reference:
|
[19] Marsala C.: Application of fuzzy rule induction to data mining.In: Proc. 3rd Internat. Conference FQAS’98 – LNAI 1495 (T. Andreasen, H. Christiansen, and H. L. Larsen, eds.), Springers, Roskilde 1998, pp. 260–271 |
Reference:
|
[20] Marsala C., Ramdani M., Toullabi, M., Zakaria D.: Fuzzy decision trees applied to the recognition of odors.In: Proc. IPMU’98 Conference, volume 1, Editions EDK, Paris 1998, pp. 532–539 |
Reference:
|
[21] Marsala C., Bigolin N. Martini: Spatial data mining with fuzzy decision trees.In: Proc. Internat. Conference on Data Mining (N. F. F. Ebecken, ed.), WIT Press, Rio de Janeiro 1998, pp. 235–248 |
Reference:
|
[22] Marsala C., Bouchon–Meunier B.: An adaptable system to construct fuzzy decision trees.In: Proc. NAFIPS’99 (North American Fuzzy Information Processing Society), New York 1999, pp. 223–227 |
Reference:
|
[23] Marsala C., Bouchon–Meunier, B., Ramer A.: Hierarchical model for discrimination measures.In: Proc. IFSA’99 World Congress, Taiwan 1999, pp. 339–343 |
Reference:
|
[24] Mo X.: Compilation de bases de connaissances avec prise en compte de l’imprécision et de l’incertitude.PhD Thesis, Université Paul Sabatier, Toulouse 1990 |
Reference:
|
[25] Nguyen H. T., Kreinovitch, V., Tolbert D.: On robustness of fuzzy logics.In: Proc. FUZZ-IEEE Internat. Conference, volume 1, San Francisco 1993, pp. 543–547 |
Reference:
|
[26] Nguyen H. T., Kreinovitch, V., Tolbert D.: A measure of average sensitivity for fuzzy logics.Internat. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 2 (1994), 4, 361–375 MR 1309606, 10.1142/S0218488594000304 |
Reference:
|
[27] Pedrycz, Yubazaki, Ohtani,, Hirota: Robustness and sensitivity in fuzzy computational structures.In: Proc. IFSA’91 Conference, Brussels 1991, pp. 197–200 |
Reference:
|
[28] Py J.-J.: Éléments d’étude de la sensibilité des modèles flous.Université Paris IX, 1997 |
Reference:
|
[29] Quinlan J. R.: Induction of decision trees.Machine Learning 1 (1986), 1, 86–106 10.1007/BF00116251 |
Reference:
|
[30] Quinlan J. R.: Improved use of continuous attributes in C4.5. J. Artificial Intelligence Research 4 (1996), 3, 77–90 Zbl 0900.68112 |
Reference:
|
[31] Ramdani M.: Système d’Induction Formelle à Base de Connaissances Imprécises.PhD Thesis, Université P. et M. Curie, Paris 1994 |
Reference:
|
[32] Rifqi M.: Mesures de comparaison, typicalité et classification d’objets flous : théorie et pratique.PhD Thesis, Université P. et M. Curie, Paris 1996 |
Reference:
|
[33] Shekhar S., Hamidzadeh B., Kohli, A., Coyle M.: Learning transformation rules for semantic query optimization: A data-driven approach.IEEE Trans. on Knowledge and Data Engineering 5 (1993), 6, 950–964 10.1109/69.250077 |
Reference:
|
[34] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning, part 3.Inform. Sci. 9 (1976), 43–80 MR 0386371, 10.1016/0020-0255(75)90017-1 |
Reference:
|
[35] Zadeh L. A.: The role of fuzzy logic in the management of uncertainty in expert systems.Fuzzy Sets and Systems 11 (1983), 199–227.Reprinted in: Fuzzy Sets and Applications: selected papers by L. A. Zadeh (R. R. Yager, S. Ovchinnikov, R. M. Tong and H. T. Nguyen, eds.), pp. 413–441 Zbl 0553.68049, MR 0727205 |
. |