| Title:
|
The similarity of two strings of fuzzy sets (English) |
| Author:
|
Andrejková, Gabriela |
| Language:
|
English |
| Journal:
|
Kybernetika |
| ISSN:
|
0023-5954 |
| Volume:
|
36 |
| Issue:
|
6 |
| Year:
|
2000 |
| Pages:
|
[671]-687 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
Let ${\cal A},\,{\cal B}$ be the strings of fuzzy sets over ${\chi }$, where ${\chi }$ is a finite universe of discourse. We present the algorithms for operations on fuzzy sets and the polynomial time algorithms to find the string ${\cal C}$ over ${\chi }$ which is a closest common subsequence of fuzzy sets of ${\cal A}$ and ${\cal B}$ using different operations to measure a similarity of fuzzy sets. (English) |
| Keyword:
|
fuzzy set |
| Keyword:
|
polynomial-time algorithms |
| MSC:
|
03E72 |
| MSC:
|
68W32 |
| idZBL:
|
Zbl 1249.03089 |
| idMR:
|
MR1805814 |
| . |
| Date available:
|
2009-09-24T19:36:13Z |
| Last updated:
|
2015-03-27 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135380 |
| . |
| Reference:
|
[1] Andrejková G.: The longest restricted common subsequence problem.In: Proc. Prague Stringology Club Workshop’98, Prague 1998, pp. 14–25 |
| Reference:
|
[2] Andrejková G.: The set closest common subsequence problem.In: Proceedings of 4th International Conference on Applied Informatics’99, Eger–Noszvaj 1999, p. 8 |
| Reference:
|
[3] Gottwald S.: Fuzzy Sets and Fuzzy Logic.Vieweg, Wiesbaden 1993, p. 216 Zbl 0782.94025, MR 1218623 |
| Reference:
|
[4] Hájek P.: Mathematics of Fuzzy Logic.Kluwer, Dordrecht 1998 |
| Reference:
|
[5] Hirschberg D. S.: Algorithms for longest common subsequence problem.J. Assoc. Comput. Mach. 24 (1977), 664–675 MR 0461985, 10.1145/322033.322044 |
| Reference:
|
[6] Hirschberg D. S., Larmore L. L.: The set LCS problem.Algorithmica 2 (1987), 91–95 Zbl 0642.68065, MR 1554313, 10.1007/BF01840351 |
| Reference:
|
[7] Hirschberg D. S., Larmore L. L.: The set-set LCS problem.Algorithmica 4 (1989), 503–510 Zbl 0684.68080, MR 1019389, 10.1007/BF01553904 |
| Reference:
|
[8] Kaufmann A.: Introduction to Theory of Fuzzy Subsets.Vol. 1: Fundamental Theoretical Elements. Academic Press, New York 1975 MR 0485402 |
| Reference:
|
[9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer, Dordrecht 2000 Zbl 1087.20041, MR 1790096 |
| Reference:
|
[10] Mohanty S. P.: Shortest string containing all permutations.Discrete Math. 31 (1980), 91–95 Zbl 0444.05014, MR 0578066, 10.1016/0012-365X(80)90177-6 |
| Reference:
|
[11] Nakatsu N., Kombayashi, Y., Yajima S.: A longest common subsequence algorithm suitable for similar text strings.Acta Inform. 18 (1982), 171–179 MR 0687701 |
| Reference:
|
[12] Zadeh L.: Fuzzy sets as a basis for a theory of possibility.Fuzzy Sets and Systems 1 (1978), 3–28 MR 0480045, 10.1016/0165-0114(78)90029-5 |
| . |