Previous |  Up |  Next

Article

Title: Possibilistic alternatives of elementary notions and relations of the theory of belief functions (English)
Author: Kramosil, Ivan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 2
Year: 2001
Pages: [109]-126
Summary lang: English
.
Category: math
.
Summary: The elementary notions and relations of the so called Dempster–Shafer theory, introducing belief functions as the basic numerical characteristic of uncertainty, are modified to the case when probabilistic measures and basic probability assignments are substituted by possibilistic measures and basic possibilistic assignments. It is shown that there exists a high degree of formal similarity between the probabilistic and the possibilistic approaches including the role of the possibilistic Dempster combination rule and the relations concerning the possibilistic nonspecificity degrees. (English)
Keyword: Dempster-Shafer theory
Keyword: possibilistic approach
Keyword: belief function
MSC: 28E10
MSC: 68T30
MSC: 68T37
idZBL: Zbl 1265.68267
idMR: MR1839222
.
Date available: 2009-09-24T19:37:41Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135394
.
Reference: [1] Cooman G. De: Possibility theory I – III.Internat. J. Gen. Systems 25 (1997), 291–323, 325–351, 353–371 10.1080/03081079708945160
Reference: [2] Dubois D., Prade H.: Théorie des Possibilités – Applications à la Représentation des Connaissances en Informatique.Mason, Paris 1985 Zbl 0674.68059
Reference: [3] Dubois D., Prade, H., Sabbadin R.: Qualitative decision theory with Sugeno integrals.In: Uncertainty in Artificial Intelligence – Proceedings of the 14th Conference (G. T. Cooper and S. Morales, eds.), Madison, Wisconsin, pp. 121–128 Zbl 0984.91023, MR 1806517
Reference: [4] Dubois D., Godo L., Prade, H., Zapico A.: Possibilistic representation of qualitative utility – an improved characterization.In: Proc. 6th International Conference on Information Processing and Management of Uncertainty (IPMU), Paris 1998, Vol. I, pp. 180–187
Reference: [5] Hisdal E.: Conditional possibilities, independence and noninteraction.Fuzzy Sets and Systems 1 (1978), 283–297 Zbl 0393.94050, 10.1016/0165-0114(78)90019-2
Reference: [6] Kramosil I.: A probabilistic analysis of the Dempster combination rule.In: The Logica Yearbook 1997 (T. Childers, ed.), Filosofia, Prague 1998, pp. 175–187 MR 1614001
Reference: [7] Kramosil I.: Alternative definitions of conditional possibilistic measures.Kybernetika 34 (1998), 2, 137–147 MR 1621506
Reference: [8] Kramosil I.: On stochastic and possibilistic independence.Neural Network World 4 (1999), 275–296
Reference: [9] Kramosil I.: Boolean–like interpretation of Sugeno integral.In: Proc. European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU 99), (A. Hunter and S. Parsons, eds., Lecture Notes in Artificial Intelligence 1638), Springer Verlag, Berlin 2000, pp. 245–255 Zbl 0930.28015, MR 1773322
Reference: [10] Kramosil I.: Nonspecificity degrees of basic probability assignments in Dempster–Shafer theory.Computers and Artificial Intelligence 18 (1999), 6, 559–574 Zbl 0989.60009, MR 1742716
Reference: [11] Vejnarová J.: Composition of possibility measures on finite spaces – preliminary results.In: Proc. 7th International Conference on Information Processing and Management of Uncertainty (IPMU), Paris 1998, Vol. I, 25–30
Reference: [12] Zadeh L. A.: Fuzzy sets as a basis for a theory of possibility.Fuzzy Sets and Systems 1 (1978), 3–28 MR 0480045, 10.1016/0165-0114(78)90029-5
.

Files

Files Size Format View
Kybernetika_37-2001-2_1.pdf 2.048Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo