Previous |  Up |  Next

Article

Title: Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers (English)
Author: Kolesárová, Anna
Author: Vivona, Doretta
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 2
Year: 2001
Pages: [127]-145
Summary lang: English
.
Category: math
.
Summary: In the paper the entropy of $L$–$R$ fuzzy numbers is studied. It is shown that for a given norm function, the computation of the entropy of $L$–$R$ fuzzy numbers reduces to using a simple formula which depends only on the spreads and shape functions of incoming numbers. In detail the entropy of $T_M$–sums and $T_M$–products of $L$–$R$ fuzzy numbers is investigated. It is shown that the resulting entropy can be computed only by means of the entropy of incoming fuzzy numbers or by means of their parameters without the computation of membership functions of corresponding sums or products. Moreover, the results for some other $t$-norm–based sums and products are derived. Several examples are included. (English)
Keyword: entropy
Keyword: $L$-$R$ fuzzy numbers
MSC: 03B52
MSC: 03E72
MSC: 26E50
MSC: 94A17
MSC: 94D05
idZBL: Zbl 1265.03020
idMR: MR1839223
.
Date available: 2009-09-24T19:37:49Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135395
.
Reference: [1] Alsina C., Trillas E.: Sur les mesures du degré de flou.Stochastica 3 (1979), 81–84 Zbl 0425.94030, MR 0562445
Reference: [2] Batle N., Trillas E.: Entropy and fuzzy integral.J. Math. Anal. Appl. 69 (1979), 469–474 Zbl 0421.28015, MR 0538233, 10.1016/0022-247X(79)90158-6
Reference: [3] Benvenuti P., Vivona, D., Divari M.: Fuzziness measures via Sugeno’s integral.In: Fuzzy Logic and Soft Computing (B. Bouchon–Meunier, R. R. Yager and L. A. Zadeh, eds.). Adv. Fuzzy Systems 4 (1995), 330–336 Zbl 0953.28014, MR 1391011
Reference: [4] Benvenuti P., Vivona, D., Divari M.: Divergence and fuzziness measures.Soft Computing (2000), in press Zbl 0993.28009
Reference: [5] Benvenuti P., Vivona, D., Divari M.: Order relations for fuzzy sets and entropy measure.In: New Trends in Fuzzy Systems (D. Mancini, M. Squillante, A. Ventre, eds.), World Scientific 1998, pp. 224–232
Reference: [6] Couso I., Gil P.: Measure of fuzziness of type 2 fuzzy sets.In: Proceedings IPMU’96, Granada 1996, pp. 581–584
Reference: [7] Baets B. De, Marková–Stupňanová A.: Analytical expression for the additions of fuzzy intervals.Fuzzy Sets and Systems 91 (1997), 203–213 MR 1480046, 10.1016/S0165-0114(97)00141-3
Reference: [8] Luca A. De, Termini S.: A definition of a non probabilistic entropy in the setting of fuzzy sets theory.Inform. and Control 20 (1972), 301–312 MR 0327383, 10.1016/S0019-9958(72)90199-4
Reference: [9] Dubois D., Prade H.: Additions of interactive fuzzy numbers.IEEE Trans. Automat. Control 26 (1981), 926–936 MR 0635852, 10.1109/TAC.1981.1102744
Reference: [10] Dubois D., Kerre E. E., Mesiar, R., Prade H.: Fuzzy interval analysis.In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 483–582 Zbl 0988.26020, MR 1890240
Reference: [11] Ebanks B. R.: On measures of fuzziness and their representations.J. Math. Anal. Appl. 94 (1983), 24–37 Zbl 0523.94036, MR 0701447, 10.1016/0022-247X(83)90003-3
Reference: [12] Hong D. H., Hwang, Ch.: Upper bound of $T$–sums of $L$–$R$ fuzzy numbers.In: Proceedings IPMU’96, Granada 1996, pp. 347–353
Reference: [13] Kaufmann A.: Introduction to the Theory of Fuzzy Subsets: Volume 1.Academic Press, New York 1975 MR 0485402
Reference: [14] Klement E. P., Mesiar R.: Triangular norms.Tatra Mountains Math. Publ. 13 (1997), 169–194 Zbl 0915.04002, MR 1483147
Reference: [15] Klement E. P., Mesiar, R., Pap E.: Quasi and pseudo–inverses of monotone functions, and the constructions of $t$-norms.Fuzzy Sets and Systems 104 (1999), 3–13 MR 1685803
Reference: [16] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [17] Knopfmacher J.: On measures of fuzziness.J. Math. Anal. Appl. 49 (1975), 529–534 Zbl 0308.02061, MR 0434619, 10.1016/0022-247X(75)90196-1
Reference: [18] Kolesárová A.: Triangular norm-based addition of linear fuzzy numbers.Tatra Mountains Math. Publ. 6 (1995), 75–81 Zbl 0851.04005, MR 1363985
Reference: [19] Kolesárová A.: Similarity preserving $t$-norm-based additions of fuzzy numbers.Fuzzy Sets and Systems 91 (1997), 215–229 Zbl 0920.04009, MR 1480047, 10.1016/S0165-0114(97)00142-5
Reference: [20] Kolesárová A.: Triangular norm-based additions preserving linearity of linear fuzzy intervals.Mathware and Soft Computing 5 (1998), 91–98 MR 1632755
Reference: [21] Loo S. G.: Measures of fuzziness.Cybernetica 20 (1997), 201–210
Reference: [22] Mareš M.: Computation over Fuzzy Quantities.CRC Press, Boca Raton 1994 Zbl 0859.94035, MR 1327525
Reference: [23] Marková–Stupňanová A.: $T$–sums of $L$–$R$ fuzzy numbers.Fuzzy Sets and Systems 85 (1996), 379–384 10.1016/0165-0114(95)00370-3
Reference: [24] Mesiar R.: Computation over $L$–$R$ fuzzy numbers.In: Proceedings CIFT’95, Trento 1995, pp. 165–176
Reference: [25] Mesiar R.: $L$–$R$ fuzzy numbers.In: Proceedings IPMU’96, Granada 1996, pp. 337–342 Zbl 0871.04010
Reference: [26] Mesiar R.: A note on the $T$–sum of $L$–$R$ fuzzy numbers.Fuzzy Sets and Systems 79 (1996), 259–261 MR 1388398, 10.1016/0165-0114(95)00178-6
Reference: [27] Mesiar R.: Shape preserving additions of fuzzy intervals.Fuzzy Sets and Systems 86 (1997), 73–78 Zbl 0921.04002, MR 1438439, 10.1016/0165-0114(95)00401-7
Reference: [28] Mesiar R.: Triangular norm-based additions of fuzzy intervals.Fuzzy Sets and Systems 91 (1997), 231–237 MR 1480048, 10.1016/S0165-0114(97)00143-7
Reference: [29] Nguyen H. T.: A note on a extension principle for fuzzy sets.J. Math. Anal. Appl. 64 (1978), 369–380 MR 0480044, 10.1016/0022-247X(78)90045-8
Reference: [30] Pal N. R., Bezdek J. C.: Measuring fuzzy uncertainty.IEEE Trans. Fuzzy Syst. 2 (1994), 107–118 10.1109/91.277960
Reference: [31] Pal N. R., Bezdek J. C.: Quantifying different facets of fuzzy uncertainty.In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 459–480 Zbl 0986.94056, MR 1890239
Reference: [32] Sander W.: On measures of fuzziness.Fuzzy Sets and Systems 29 (1989), 49–55 MR 0976287, 10.1016/0165-0114(89)90135-8
Reference: [33] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, Amsterdam 1983 Zbl 0546.60010, MR 0790314
Reference: [34] Trillas E., Riera T.: Entropies of finite fuzzy sets.Inform. Sci. 15 (1978), 158–168 MR 0538847, 10.1016/0020-0255(78)90005-1
Reference: [35] Wang W. J., Chiu, Ch. H.: The entropy of fuzzy numbers with arithmetical operations.Fuzzy Sets and Systems 111 (2000), 357–366 MR 1748553
Reference: [36] Vivona D.: Mathematical aspects of the theory of measures of fuzziness.Mathware and Soft Computing 3 (1996), 211–224 Zbl 0859.04007, MR 1414268
Reference: [37] Yager R. R.: On measures of fuzziness and negations, Part I: membership in the unit interval.Internat. J. Gen. Systems 5 (1979), 221–229 MR 0553492, 10.1080/03081077908547452
Reference: [38] Zadeh L. A.: Probability measures of fuzzy events.J. Math. Anal. Appl. 23 (1968), 421–427 Zbl 0174.49002, MR 0230569, 10.1016/0022-247X(68)90078-4
.

Files

Files Size Format View
Kybernetika_37-2001-2_2.pdf 1.752Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo