Previous |  Up |  Next

Article

Title: The variational principle of fixed point theorems in certain fuzzy topological spaces (English)
Author: Balasubramaniam, P.
Author: Sankar, S. Murali
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 2
Year: 2001
Pages: [147]-158
Summary lang: English
.
Category: math
.
Summary: The main purpose of this paper is to introduce the concept of $F$-type fuzzy topological spaces. Further variational principle and Caristi’s fixed point theorem have been extended in the $F$-type fuzzy topological spaces. (English)
Keyword: $F$-type fuzzy topological space
Keyword: variational principle
MSC: 03E72
MSC: 47H10
MSC: 54A40
MSC: 54H25
idZBL: Zbl 1265.54034
idMR: MR1839224
.
Date available: 2009-09-24T19:37:56Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135396
.
Reference: [1] Caristi J.: Fixed point theorem for mapping satisfying inwardness conditions.Trans. Amer. Math. Soc. 215 (1976), 241–251 MR 0394329, 10.1090/S0002-9947-1976-0394329-4
Reference: [2] Ekeland J.: On the variational principle.J. Math. Anal. Appl. 47 (1974), 324–353 Zbl 0286.49015, MR 0346619, 10.1016/0022-247X(74)90025-0
Reference: [3] Fang J. X.: The variational principle and fixed point theorems in certain topological spaces.J. Math. Anal. Appl. 202 (1996), 398–412 Zbl 0859.54042, MR 1406237, 10.1006/jmaa.1996.0323
Reference: [4] George A., Veeramani P.: On some results in fuzzy metric spaces.Fuzzy Sets and Systems 64 (1994), 395–399 Zbl 0843.54014, MR 1289545, 10.1016/0165-0114(94)90162-7
Reference: [5] Grabic M.: Fixed points in fuzzy metric spaces.Fuzzy Sets and Systems 27 (1988), 385–389 MR 0956385, 10.1016/0165-0114(88)90064-4
Reference: [6] Katsaras A. K., Liu D. B.: Fuzzy vector spaces and fuzzy topological vector spaces.J. Math. Anal. Appl. 58 (1977), 135–145 Zbl 0358.46011, MR 0440481, 10.1016/0022-247X(77)90233-5
Reference: [7] Kramosil I., Michálek J.: Fuzzy metric and statistical metric spaces.Kybernetika 11 (1975), 326–334 MR 0410633
Reference: [8] Menger K.: Statistics metrics.Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535–537 MR 0007576, 10.1073/pnas.28.12.535
Reference: [9] Schweizer B., Sklar A.: Statistical metric spaces.Pacific J. Math. 10 (1960), 314–334 Zbl 0096.33203, MR 0115153
Reference: [10] Srivastava R., Lal S. N., Srivastava A. K.: Fuzzy Hausdorff topological spaces.J. Math. Anal. Appl. 81 (1981), 497–506 Zbl 0491.54004, MR 0622833, 10.1016/0022-247X(81)90078-0
Reference: [11] Zadeh L. A.: Fuzzy sets.Inform. and Control 89 (1965), 338–353 Zbl 0139.24606, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
Kybernetika_37-2001-2_3.pdf 1.112Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo