Previous |  Up |  Next

Article

Title: On robust stability of neutral systems (English)
Author: Niculescu, Silviu-Iulian
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 3
Year: 2001
Pages: [253]-263
Summary lang: English
.
Category: math
.
Summary: This paper focuses on the problem of uniform asymptotic stability of a class of linear neutral systems including some constant delays and time-varying cone-bounded nonlinearities. Sufficient stability conditions are derived by taking into account the weighting factors describing the nonlinearities. The proposed results are applied to the stability analysis of a class of lossless transmission line models. (English)
Keyword: asymptotic stability
Keyword: linear neutral system
MSC: 34K20
MSC: 34K35
MSC: 34K40
MSC: 93C05
MSC: 93C23
MSC: 93D09
MSC: 93D20
idZBL: Zbl 1265.93207
idMR: MR1859084
.
Date available: 2009-09-24T19:39:17Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135407
.
Reference: [1] Abolinia V. E., Myshkis A. D.: Mixed problem for an almost linear hyperbolic system in the plane (in Russian).Mat. Sb. 12 (1960), 423–442
Reference: [2] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear matrix inequalities in system and control theory.SIAM Stud. Appl. Math. 15 (1994) Zbl 0816.93004, MR 1284712
Reference: [3] Brayton R. K.: Nonlinear oscillations in a distributed network.Quart. Appl. Math. 24 (1976), 289–301
Reference: [4] Brayton R. K., Miranker W. L.: Oscillations in a distributed network.Arch. Rational Mech. Anal. 17 (1964), 358–376 MR 0168864
Reference: [5] Chen J.: On computing the maximal delay intervals for stability of linear delay systems.IEEE Trans. Automat. Control 40 (1995), 1087–1093 Zbl 0840.93074, MR 1345968, 10.1109/9.388690
Reference: [6] Cooke K. L., Krumme D. W.: Differential-difference equations and nonlinear partial-boundary value problems for linear hyperbolic partial differential equations.J. Math. Anal. Appl. 24 (1968), 372–387 MR 0232089, 10.1016/0022-247X(68)90038-3
Reference: [7] Ghaoui L. El, Niculescu S.-I.: Robust decision problems in engineering: An LMI approach.In: Advances in Linear Matrix Inequality Method in Control, SIAM, Philadelphia, 1999 MR 1736563
Reference: [8] Els’golts’ L. E., Norkin S. B.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments (Math.Sci. Engrg. 105). Academic Press, New York 1973 MR 0352647
Reference: [9] Halanay A., Răsvan, Vl.: Stability radii for some propagation models.IMA J. Math. Control Inform. 14 (1997) 95–107 Zbl 0873.93067, MR 1446966, 10.1093/imamci/14.1.95
Reference: [10] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations (Appl.Math. Sci. 99). Springer–Verlag, New York 1993 MR 1243878
Reference: [11] Hale J. K., Infante E. F., Tseng F. S. P.: Stability in linear delay equations.J. Math. Anal. Appl. 105 (1985), 533–555 MR 0778486, 10.1016/0022-247X(85)90068-X
Reference: [12] Kolmanovskii V. B., Myshkis A.: Applied Theory of Functional Differential Equations.Kluwer, Dordrecht 1992 MR 1256486
Reference: [13] Lakshmikantam V., Leela S.: Differential and integral inequalities.Volume II. Academic Press, New York 1969
Reference: [14] Malek–Zavarei M., Jamshidi M.: Time Delay Systems: Analysis, Optimization and Applications (Systems and Control Series 9).North–Holland, Amsterdam 1987 MR 0930450
Reference: [15] Niculescu S.-I.: Time-delay Systems.Qualitative Aspects on Stability and Stabilization (in French). Diderot Eds. Paris, ‘Nouveaux Essais’ Series, Paris 1997 Zbl 1235.93006
Reference: [16] Niculescu S.-I., Brogliato B.: On force measurements time-delays in control of constrained manipulators.In: Proc. IFAC on System Structure and Control, Nantes 1995, pp. 266–271
Reference: [17] Niculescu S.-I., Verriest E. I., Dugard, L., Dion J.-M.: Stability and robust stability of time-delay systems: A guided tour.In: Stability and Control of Time-delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes on Control and Information Sciences 228), Springer–Verlag, London 1998 Zbl 0914.93002, MR 1482571
Reference: [18] Răsvan, Vl.: Absolute Stability of Time Lag Control Systems (in Romanian).Ed. Academiei, Bucharest 1975 (Russian revised edition by Nauka, Moscow, 1983) MR 0453048
Reference: [19] Răsvan, Vl.: Dynamical systems with lossless propagation and neutral functional differential equations.In: Proc. MTNS’98, Padoue 1998, pp. 527–531
Reference: [20] Slemrod M., Infante E. F.: Asymptotic stability criteria for linear systems of differential difference equations of neutral type and their discrete analogues.J. Math. Anal. Appl. 38 (1972), 399–415 MR 0306678, 10.1016/0022-247X(72)90098-4
Reference: [21] Verriest E. I., Fan M. K. H., Kullstam J.: Frequency domain robust stability criteria for linear delay systems.In: Proc. 32nd IEEE Conference on Decision and Control, San Antonio 1993, pp. 3473–3478
Reference: [22] Verriest E. I.: Riccati type conditions for robust stability of delay systems (preprint).Presented at MTNS’96, St. Louis 1996
Reference: [23] Verriest E. I.: Robust stability of time-varying systems with unknown bounded delays.In: Proc. 33rd IEEE Conference on Decision and Control, Lake Buena Vista 1994, pp. 417–422
Reference: [24] Verriest E. I., Niculescu S.-I.: Delay-independent stability of linear neutral systems: A Riccati equation approach.In: Stability and Control of Time-delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes on Control and Information Sciences 228), Springer–Verlag, London 1998 Zbl 0923.93049, MR 1482573
.

Files

Files Size Format View
Kybernetika_37-2001-3_4.pdf 1.417Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo