Previous |  Up |  Next

Article

Title: Invariant factors assignment for a class of time-delay systems (English)
Author: Loiseau, Jean Jacques
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 3
Year: 2001
Pages: [265]-275
Summary lang: English
.
Category: math
.
Summary: It is well–known that every system with commensurable delays can be assigned a finite spectrum by feedback, provided that it is spectrally controllable. In general, the feedback involves distributed delays, and it is defined in terms of a Volterra equation. In the case of multivariable time–delay systems, one would be interested in assigning not only the location of the poles of the closed–loop system, but also their multiplicities, or, equivalently, the invariant factors of the closed–loop system. We answer this question. Our basic tool is the ring of operators that includes derivatives, localized and distributed delays. This ring is a Bezout ring. It is also an elementary divisor ring, and finally one can show that every matrix over this ring can be brought in column reduced form using right unimodular transformations. The formulation of the result we finally obtain in the case of time-delay systems differs from the well–known fundamental theorem of state feedback for finite dimensional systems, mainly because the reduced column degrees of a matrix of operators are not uniquely defined in general. (English)
Keyword: time-delay system
Keyword: feedback
Keyword: spectrum
Keyword: right unimodular transformations
Keyword: Invariant factors assignment
Keyword: spectral controllability
Keyword: Bezout ring
Keyword: Volterra equation
MSC: 93B25
MSC: 93B52
MSC: 93B55
MSC: 93C23
idZBL: Zbl 1265.93062
idMR: MR1859085
.
Date available: 2009-09-24T19:39:24Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135408
.
Reference: [1] Brethé D.: Contribution à l’étude de la stabilisation des systèmes linéaires à retards.Thèse de Doctorat, École Centrale de Nantes et Université de Nantes, 1997
Reference: [2] Brethé D., Loiseau J. J.: An effective algorithm for finite spectrum assignment of single-input systems with delays.Math. Comput. Simulation 45 (1998), 339–348 Zbl 1017.93506, MR 1622412, 10.1016/S0378-4754(97)00113-4
Reference: [3] Eising R.: Realization and stabilization of 2-D systems.IEEE Trans. Automat. Control 23 (1978), 793–799 Zbl 0397.93022, MR 0507790, 10.1109/TAC.1978.1101861
Reference: [4] Glüsing–Lüerßen H.: A behavioral approach to delay-differential systems.SIAM J. Control Optim. 35 (1997), 480–499 Zbl 0876.93022, MR 1436634, 10.1137/S0363012995281869
Reference: [5] Habets L.: Algebraic and Computational Aspects of Time–delay Systems.Ph. D. Thesis, Eindhoven 1994 Zbl 0804.93031, MR 1276720
Reference: [6] Kailath T.: Linear Systems.Prentice Hall, Englewood Cliffs, N. J. 1980 Zbl 0870.93013, MR 0569473
Reference: [7] Kamen E. W.: On an algebraic theory of systems defined by convolution operators.Math. Systems Theory 9 (1974), 57–74 MR 0395953, 10.1007/BF01698126
Reference: [8] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable Bezout factorizations and feedback control of linear time-delay systems.Internat. J. Control 43 (1986), 837–857 Zbl 0599.93047, MR 0828360, 10.1080/00207178608933506
Reference: [9] Kaplansky I.: Elementary divisors and modules.Trans. American Mathematical Society 66 (1949), 464–491 Zbl 0036.01903, MR 0031470, 10.1090/S0002-9947-1949-0031470-3
Reference: [10] Kučera V.: Analysis and Design of Discrete Linear Control Systems.Prentice–Hall, London, and Academia, Prague 1991 Zbl 0762.93060, MR 1182311
Reference: [11] Leborgne D.: Calcul différentiel complexe.Presses Universitaires de France, Paris, 1991 Zbl 0731.30001, MR 1091546
Reference: [12] Loiseau J. J.: Algebraic tools for the control and stabilization of time–delay systems.In: Proc. 1st IFAC Workshop on Linear Time Delay Systems, Grenoble 1998, pp. 235–249
Reference: [13] Manitius A. Z., Olbrot A. W.: Finite spectrum assignment problem for systems with delays.IEEE Trans. Automat. Control 35 (1979), 541–553 Zbl 0425.93029, MR 0538808, 10.1109/TAC.1979.1102124
Reference: [14] Morf M., Lévy B. C., Kung S.-Y.: New results in 2-D systems theory.Part I: 2-D polynomial matrices, factorizations, and coprimeness. Proc. IEEE 65 (1977), 861–872
Reference: [15] Olbrot A. W.: Stabilizability, detectability and spectrum assignment for linear systems with general time delays.IEEE Trans. Automat. Control 23 (1978), 887–890 MR 0528786, 10.1109/TAC.1978.1101879
Reference: [16] Rosenbrock H. H.: State–space and Multivariable Theory.Wiley, New York 1970 Zbl 0246.93010, MR 0325201
Reference: [17] Assche V. Van, Dambrine M., Lafay J.-F., Richard J.-P.: Some problems arising in the implementation of distributed–delay control laws.In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
Reference: [18] Watanabe K.: Finite spectrum assignment and observer for multivariable systems with commensurate delays.IEEE Trans. Automat. Control 31 (1986), 543–550 Zbl 0596.93009, MR 0839083, 10.1109/TAC.1986.1104336
.

Files

Files Size Format View
Kybernetika_37-2001-3_5.pdf 1.500Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo