Previous |  Up |  Next

Article

Title: Stabilization of fractional exponential systems including delays (English)
Author: Bonnet, Catherine
Author: Partington, Jonathan R.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 3
Year: 2001
Pages: [345]-353
Summary lang: English
.
Category: math
.
Summary: This paper analyzes the BIBO stability of fractional exponential delay systems which are of retarded or neutral type. Conditions ensuring stability are given first. As is the case for the classical class of delay systems these conditions can be expressed in terms of the location of the poles of the system. Then, in view of constructing robust BIBO stabilizing controllers, explicit expressions of coprime and Bézout factors of these systems are determined. Moreover, nuclearity is analyzed in a particular case. (English)
Keyword: delay system
Keyword: BIBO stability
MSC: 34A08
MSC: 34K40
MSC: 93C23
MSC: 93D15
MSC: 93D21
idZBL: Zbl 1265.93211
idMR: MR1859090
.
Date available: 2009-09-24T19:40:02Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135413
.
Reference: [1] Bonnet C., Partington J. R.: Bézout factors and ${L}^1$-optimal controllers for delay systems using a two-parameter compensator scheme.IEEE Trans. Automat. Control 44 (1999), 1512–1521 MR 1707048, 10.1109/9.780415
Reference: [2] Bonnet C., Partington J. R.: Analysis of fractional delay systems of retarded and neutral type.Preprint 2000 Zbl 1007.93065, MR 2133473
Reference: [3] Bonnet C., Partington J. R.: Coprime factorizations and stability of fractional differential systems.Systems Control Lett. 41 (2000), 167–174 Zbl 0985.93048, MR 1831424, 10.1016/S0167-6911(00)00050-5
Reference: [4] Curtain R. F., Zwart H. J.: An Introduction to Infinite Dimensional Linear Systems Theory.Springer–Verlag, Berlin 1995 Zbl 0839.93001, MR 1351248
Reference: [5] Glover K., Curtain R. F., Partington J. R.: Realization and approximation of linear infinite dimensional systems with error bounds.SIAM J. Control Optim. 26 (1988), 863–898 MR 0948650, 10.1137/0326049
Reference: [6] Gripenberg G., Londen S. O., Staffans O.: Volterra Integral and Functional Equations.Cambridge University Press, Cambridge, U.K. 1990 Zbl 1159.45001, MR 1050319
Reference: [7] Hille E., Phillips R. S.: Functional analysis and semi-groups.American Mathematical Society, Providence, R. I., 1957 Zbl 0392.46001, MR 0089373
Reference: [8] Hotzel R.: Some stability conditions for fractional delay systems.J. Math. Systems, Estimation, and Control 8 (1998), 1–19 Zbl 0913.93068, MR 1651287
Reference: [9] Loiseau J.-J., Mounier H.: Stabilisation de l’équation de la chaleur commandée en flux.Systèmes Différentiels Fractionnaires, Modèles, Méthodes et Applications. ESAIM Proceedings 5 (1998), 131–144 Zbl 0913.73052, MR 1665567
Reference: [10] Matignon D.: Représentations en variables d’état de modèles de guides d’ondes avec dérivation fractionnaire.Thèse de doctorat, Univ. Paris XI, 1994
Reference: [11] Partington J. R.: An Introduction to Hankel Operators.Cambridge University Press, Cambridge, U.K. 1988 Zbl 0668.47022, MR 0985586
Reference: [12] Weber E.: Linear Transient Analysis.Volume II. Wiley, New York 1956 Zbl 0073.21801, MR 0080524
.

Files

Files Size Format View
Kybernetika_37-2001-3_10.pdf 1.233Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo