Previous |  Up |  Next

Article

Title: The algebraic structure of delay-differential systems: a behavioral perspective (English)
Author: Gluesing-Luerssen, Heide
Author: Vettori, Paolo
Author: Zampieri, Sandro
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 4
Year: 2001
Pages: [397]-426
Summary lang: English
.
Category: math
.
Summary: This paper presents a survey on the recent contributions to linear time- invariant delay-differential systems in the behavioral approach. In this survey both systems with commensurate and with noncommensurate delays will be considered. The emphasis lies on the investigation of the relationship between various systems descriptions. While this can be understood in a completely algebraic setting for systems with commensurate delays, this is not the case for systems with noncommensurate delays. In the study of this class of systems functional analytic methods need to be introduced and general convolutional equations have to be incorporated. Whenever it is possible, the results will be linked to the relevant control theoretic notions. (English)
Keyword: delay-differential system
Keyword: algebraic methods
Keyword: general convolution equations
Keyword: noncommensurate delays
Keyword: delay-differential systems
Keyword: behavioral approach
MSC: 34K35
MSC: 47N70
MSC: 93B25
MSC: 93C05
MSC: 93C23
idZBL: Zbl 1265.93064
idMR: MR1859094
.
Date available: 2009-09-24T19:40:45Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135419
.
Reference: [1] Becker T., Weispfennig V.: Gröbner Bases: A Computational Approach to Commutative Algebra.Springer, New York 1993 MR 1213453
Reference: [2] Berenstein C. A., Dostal M. A.: The Ritt theorem in several variables.Ark. Mat. 12 (1974), 267–280 Zbl 0293.33001, MR 0377111, 10.1007/BF02384763
Reference: [3] Berenstein C. A., Struppa D. C.: Complex analysis and convolution equations.Several complex variables. Encyclopedia Math. Sci. 54 (1993), 1–108
Reference: [4] Berenstein C. A., Yger A.: Ideals generated by exponential-polynomials.Adv. in Math. 60 (1986), 1–80 Zbl 0586.32019, MR 0839482, 10.1016/0001-8708(86)90002-2
Reference: [5] Brezis H.: Analyse fonctionnelle: theorie et applications.Masson, Paris 1983 Zbl 1147.46300, MR 0697382
Reference: [6] Cohen A. M., Cuypers, H., (eds.) H. Sterk: Some Tapas of Computer Algebra.Springer, Berlin 1999 Zbl 0924.13021, MR 1679917
Reference: [7] Cohn P. M.: Free Rings and Their Relations.Academic Press, London 1985. Second edition Zbl 0659.16001, MR 0800091
Reference: [8] Diab A.: Sur les zéros communs des polynômes exponentiels.C. R. Acad. Sci. Paris Sér. A 281 (1975), 757–758 Zbl 0323.30003, MR 0390186
Reference: [9] Ehrenpreis L.: Solutions of some problems of division.Part III. Division in the spaces ${\mathcal D}^{\prime },\,{\mathcal H},\,{\mathcal Q}_A,\,{\mathcal O}$. Amer. J. Math. 78 (1956), 685–715 Zbl 0072.32801, MR 0083690
Reference: [10] Folland G. B.: Fourier Analysis and its Applications.Wadsworth & Brooks, Pacific Grove 1992 Zbl 1222.42001, MR 1145236
Reference: [11] Gluesing–Luerssen H.: A convolution algebra of delay-differential operators and a related problem of finite spectrum assignability.Math. Control Signal Systems 13 (2000), 22–40 Zbl 0954.93007, MR 1742138, 10.1007/PL00009859
Reference: [12] Gluesing–Luerssen H.: A behavioral approach to delay differential equations.SIAM J. Control Optim. 35 (1997), 480–499 MR 1436634, 10.1137/S0363012995281869
Reference: [13] Gluesing–Luerssen H.: Linear delay-differential systems with commensurate delays: An algebraic approach.Habilitationsschrift at the University of Oldenburg 2000. Accepted for publication as Lecture Notes in Mathematics, Springer Zbl 0989.34001, MR 1874340
Reference: [14] Habets L. C. G. J. M.: System equivalence for AR-systems over rings – With an application to delay-differential systems.Math. Control Signal Systems 12 (1999), 219–244 Zbl 0951.93015, MR 1707899, 10.1007/PL00009851
Reference: [15] Habets L. C. G. J. M., Eijndhoven S. J. L.: Behavioral controllability of time-delay systems with incommensurate delays.In: Proc. IFAC Workshop on Linear Time Delay Systems (A. M. Perdon, ed.), Ancona 2000, pp. 195–201
Reference: [16] Helmer O.: The elementary divisor theorem for certain rings without chain condition.Bull. Amer. Math. Soc. 49 (1943), 225–236 Zbl 0060.07606, MR 0007744, 10.1090/S0002-9904-1943-07886-X
Reference: [17] Jacobson N.: Basic Algebra I.Second edition. W. H. Freeman, New York 1985 Zbl 0557.16001, MR 0780184
Reference: [18] Kamen E. W.: On an algebraic theory of systems defined by convolution operators.Math. Systems Theory 9 (1975), 57–74 Zbl 0318.93003, MR 0395953, 10.1007/BF01698126
Reference: [19] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable Bezout factorizations and feedback control of linear time-delay systems.Internat. J. Control 43 (1986), 837–857 Zbl 0599.93047, MR 0828360, 10.1080/00207178608933506
Reference: [20] Kaplansky I.: Elementary divisors and modules.Trans. Amer. Math. Soc. 66 (1949), 464–491 Zbl 0036.01903, MR 0031470, 10.1090/S0002-9947-1949-0031470-3
Reference: [21] Kelley J. L., Namioka I.: Topological Vector Spaces.Van Nostrand, 1963 MR 0166578
Reference: [22] Lang S.: Algebra.Second edition. Addison–Wesley, Reading, N.J. 1984 Zbl 1063.00002, MR 0783636
Reference: [23] Lezama O., Vasquez O.: On the simultaneous basis property in Prüfer domains.Acta Math. Hungar. 80 (1998), 169–176 MR 1624566, 10.1023/A:1006537212456
Reference: [24] Malgrange B.: Existence et approximations des solutions des équations aux dérivées partielles et des équations de convolution.Ann. Inst. Fourier 6 (1955/1956), 271–355 MR 0086990, 10.5802/aif.65
Reference: [25] Meisters G. H.: Periodic distributions and non-Liouville numbers.J. Funct. Anal. 26 (1977), 68–88 Zbl 0359.46027, MR 0448068, 10.1016/0022-1236(77)90016-7
Reference: [26] Mounier H.: Algebraic interpretations of the spectral controllability of a linear delay system.Forum Math. 10 (1998), 39–58 Zbl 0891.93014, MR 1490137, 10.1515/form.10.1.39
Reference: [27] Niven I.: Irrational Numbers.Wiley, New York 1956 Zbl 0146.27703, MR 0080123
Reference: [28] Oberst U.: Multidimensional constant linear systems.Acta Appl. Math. 20 (1990), 1–175 Zbl 0715.93014, MR 1078671, 10.1007/BF00046908
Reference: [29] Olbrot A. W., Pandolfi L.: Null controllability of a class of functional differential systems.Internat. J. Control 47 (1988), 193–208 Zbl 0662.93008, MR 0929735, 10.1080/00207178808906006
Reference: [30] Parreau F., Weit Y.: Schwartz’s theorem on mean periodic vector-valued functions.Bull. Soc. Math. France 117 (1989), 3, 319–325 Zbl 0704.46011, MR 1020109
Reference: [31] Polderman J. W., Willems J. C.: Introduction to Mathematical Systems Theory.A behavioral approach. Springer, Boston 1998 Zbl 0940.93002, MR 1480665
Reference: [32] Rocha P., Wood J.: Trajectory control and interconnection of 1D and $n$D systems.SIAM J. Control Optim. 40 (2001), 107–134 MR 1855308, 10.1137/S0363012999362797
Reference: [33] Schwartz L.: Théorie génerale des fonctions moyennes-périodiques.Ann. of Math. (2) 48 (1947), 857–929 10.2307/1969386
Reference: [34] Treves F.: Topological Vector Spaces, Distributions and Kernels.Academic Press, New York 1967 Zbl 1111.46001, MR 0225131
Reference: [35] Eijndhoven S. J. L. van, Habets L. C. G. J. M.: Equivalence of Convolution Systems in a Behavioral Framework.Report RANA 99-25. Eindhoven University of Technology 1999
Reference: [36] Poorten A. J. van der, Tijdeman R.: On common zeros of exponential polynomials.Enseign. Math. (2) 21 (1975), 57–67 MR 0379387
Reference: [37] Vettori P.: Delay Differential Systems in the Behavioral Approach.Ph. D. Thesis, Università di Padova 1999
Reference: [38] Vettori P., Zampieri S.: Controllability of systems described by convolutional or delay-differential equations.SIAM J. Control Optim. 39 (2000), 728–756 Zbl 0976.34070, MR 1786327, 10.1137/S0363012999359718
Reference: [39] Vettori P., Zampieri S.: Some results on systems described by convolutional equations.IEEE Trans. Automat Control. AC–46 (2001), 793–797 Zbl 1009.93013, MR 1833038, 10.1109/9.920803
Reference: [40] Willems J. C.: On interconnection, control, and feedback.IEEE Trans. Automat. Control AC-42 (1997), 326–339 MR 1435822, 10.1109/9.557576
Reference: [41] Zemanian A. H.: Distribution Theory and Transform Analysis.McGraw–Hill, New York 1965 Zbl 0643.46028, MR 0177293
.

Files

Files Size Format View
Kybernetika_37-2001-4_3.pdf 3.792Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo