[1] Becker T., Weispfennig V.:
Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, New York 1993
MR 1213453
[3] Berenstein C. A., Struppa D. C.: Complex analysis and convolution equations. Several complex variables. Encyclopedia Math. Sci. 54 (1993), 1–108
[6] Cohen A. M., Cuypers, H., (eds.) H. Sterk:
Some Tapas of Computer Algebra. Springer, Berlin 1999
MR 1679917 |
Zbl 0924.13021
[8] Diab A.:
Sur les zéros communs des polynômes exponentiels. C. R. Acad. Sci. Paris Sér. A 281 (1975), 757–758
MR 0390186 |
Zbl 0323.30003
[9] Ehrenpreis L.:
Solutions of some problems of division. Part III. Division in the spaces ${\mathcal D}^{\prime },\,{\mathcal H},\,{\mathcal Q}_A,\,{\mathcal O}$. Amer. J. Math. 78 (1956), 685–715
MR 0083690 |
Zbl 0072.32801
[10] Folland G. B.:
Fourier Analysis and its Applications. Wadsworth & Brooks, Pacific Grove 1992
MR 1145236 |
Zbl 1222.42001
[11] Gluesing–Luerssen H.:
A convolution algebra of delay-differential operators and a related problem of finite spectrum assignability. Math. Control Signal Systems 13 (2000), 22–40
DOI 10.1007/PL00009859 |
MR 1742138 |
Zbl 0954.93007
[13] Gluesing–Luerssen H.:
Linear delay-differential systems with commensurate delays: An algebraic approach. Habilitationsschrift at the University of Oldenburg 2000. Accepted for publication as Lecture Notes in Mathematics, Springer
MR 1874340 |
Zbl 0989.34001
[15] Habets L. C. G. J. M., Eijndhoven S. J. L.: Behavioral controllability of time-delay systems with incommensurate delays. In: Proc. IFAC Workshop on Linear Time Delay Systems (A. M. Perdon, ed.), Ancona 2000, pp. 195–201
[21] Kelley J. L., Namioka I.:
Topological Vector Spaces. Van Nostrand, 1963
MR 0166578
[24] Malgrange B.:
Existence et approximations des solutions des équations aux dérivées partielles et des équations de convolution. Ann. Inst. Fourier 6 (1955/1956), 271–355
DOI 10.5802/aif.65 |
MR 0086990
[30] Parreau F., Weit Y.:
Schwartz’s theorem on mean periodic vector-valued functions. Bull. Soc. Math. France 117 (1989), 3, 319–325
MR 1020109 |
Zbl 0704.46011
[31] Polderman J. W., Willems J. C.:
Introduction to Mathematical Systems Theory. A behavioral approach. Springer, Boston 1998
MR 1480665 |
Zbl 0940.93002
[33] Schwartz L.:
Théorie génerale des fonctions moyennes-périodiques. Ann. of Math. (2) 48 (1947), 857–929
DOI 10.2307/1969386
[34] Treves F.:
Topological Vector Spaces, Distributions and Kernels. Academic Press, New York 1967
MR 0225131 |
Zbl 1111.46001
[35] Eijndhoven S. J. L. van, Habets L. C. G. J. M.: Equivalence of Convolution Systems in a Behavioral Framework. Report RANA 99-25. Eindhoven University of Technology 1999
[36] Poorten A. J. van der, Tijdeman R.:
On common zeros of exponential polynomials. Enseign. Math. (2) 21 (1975), 57–67
MR 0379387
[37] Vettori P.: Delay Differential Systems in the Behavioral Approach. Ph. D. Thesis, Università di Padova 1999