Previous |  Up |  Next

Article

Title: Separation principle for nonlinear systems using a bilinear approximation (English)
Author: Hammami, Mohamed Ali
Author: Jerbi, Hamadi
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 5
Year: 2001
Pages: [565]-573
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the local stabilization problem of a class of planar nonlinear systems by means of an estimated state feedback law. Our approach is to use a bilinear approximation to establish a separation principle. (English)
Keyword: nonlinear system
Keyword: stabilization problem
Keyword: feedback
Keyword: bilinear approximation
MSC: 93C10
MSC: 93D15
idZBL: Zbl 1265.93200
idMR: MR1877074
.
Date available: 2009-09-24T19:41:44Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135427
.
Reference: [1] Baccioti A., Boieri P.: A characterization of single input planar bilinear systems which admit a smooth stabilizer.Systems Control Lett. 16 (1991), 139–143 10.1016/0167-6911(91)90008-3
Reference: [2] Boothby W., Marino R.: Feedback stabilization of planar nonlinear systems.Systems Control Lett. 12 (1989), 87–92 Zbl 0684.93062, MR 0979731, 10.1016/0167-6911(89)90100-X
Reference: [3] Chabour R., Hammouri H.: Stabilization of planar bilinear systems using an observer configuration.Appl. Math. Lett. 6 (1993), 7–10 Zbl 0774.93014, MR 1347745, 10.1016/0893-9659(93)90137-C
Reference: [4] Chabour R., Sallet, G., Vivalda J. C.: Stabilization of nonlinear two dimensional systems: a bilinear approach.Math. Control Signals Systems 9 (1996), 224–246 MR 1358071
Reference: [5] Chabour R., Vivalda J. C.: Stabilisation des systemes bilineaires dans le plan par une commande non reguliere.In: Proc. European Control Conference, ECC’91, Grenoble 1991, pp. 485–487 MR 1113096
Reference: [6] Čelikovský S.: On the global linearization of bilinear systems.Systems Control Lett. 15 (1990), 433–439 Zbl 0732.93012, MR 1084586, 10.1016/0167-6911(90)90068-6
Reference: [7] Dayawansa W. P., Martin C. F., Knowles G.: Asymptotic stabilization of a class smooth two-dimensional systems.SIAM J. Control Optim. 28 (1990), 1321–1349 MR 1075206, 10.1137/0328070
Reference: [8] Gauthier J. P., Kupka I.: A separation principle for bilinear systems with dissipative drift.IEEE Trans. Automat. Control AC–37 (1992), 12, 1970–1974 Zbl 0778.93102, MR 1200614, 10.1109/9.182484
Reference: [9] Hahn W.: Stability of Motion.Springer–Verlag, Berlin 1967 Zbl 0189.38503, MR 0223668
Reference: [10] Hammami M. A.: Stabilization of a class of nonlinear systems using an observer design.In: Proc. 32nd IEEE Conference on Decision and Control, San Antonio 1993, Vol. 3, pp. 1954–1959
Reference: [11] Hammami M. A., Jerbi H.: On the stabilization of homogeneous cubic vector fields in the plane.Appl. Math. Lett. 7 (1994), 4, 95–99 MR 1350400, 10.1016/0893-9659(94)90019-1
Reference: [12] Jerbi H.: Quelques resultats sur la stabilization des systèmes non linéaires par estimation et retour d’état.Doctorat de l’université de Metz 1994
Reference: [13] Jerbi H., Hammami M. A., Vivalda J. C.: On the stabilization of homogeneous affine systems.In: 2nd IEEE M.S.N.D. Automat. Control, Chania 1994, pp. 319–326
Reference: [14] Massera J. L.: Contribution to stability theory.Ann. of Math. 64 (1956), 182–206 MR 0079179, 10.2307/1969955
Reference: [15] Seibert P., Suarez R.: Global stabilization of nonlinear cascade systems.Syst. Control Lett. 14 (1990), 347–352 Zbl 0699.93073, MR 1052644, 10.1016/0167-6911(90)90056-Z
Reference: [16] Vidyasagar M.: On the stabilization of nonlinear systems using state detection.IEEE Trans. Automat. Control AC–25 (1980), 504–509 Zbl 0429.93046, MR 0571757, 10.1109/TAC.1980.1102376
.

Files

Files Size Format View
Kybernetika_37-2001-5_3.pdf 948.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo