Previous |  Up |  Next

Article

Title: Solution for a classical problem in the calculus of variations via rationalized Haar functions (English)
Author: Razzaghi, Mohsen
Author: Ordokhani, Yadollah
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 5
Year: 2001
Pages: [575]-583
Summary lang: English
.
Category: math
.
Summary: A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results. (English)
Keyword: variational problem
Keyword: brachistochrone problem
Keyword: nonlinear optimal control problem
MSC: 49J15
MSC: 49K15
MSC: 49M30
MSC: 65K10
MSC: 70Q05
idZBL: Zbl 1265.49023
idMR: MR1877075
.
Date available: 2009-09-24T19:41:53Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135428
.
Reference: [1] Balakrishnan A. V., Neustadt L. W.: Computing Methods in Optimization Problems.Academic Press, New York 1964 Zbl 0185.00104, MR 0167365
Reference: [2] Beauchamp K. G.: Walsh Functions and their Applications.Academic Press, New York 1985, pp. 72–86 MR 0462758
Reference: [3] Bellman R.: Dynamic Programming.Princeton University Press, N.J. 1957 Zbl 1205.90002, MR 0090477
Reference: [4] Bryson A. E., Ho Y. C.: Applied Optimal Control.Blaisdell Waltham 1969
Reference: [5] Chang R. Y., Wang M. L.: Shifted Legendre direct method for variational problems series.J. Optim. Theory Appl. 39 (1983), 299–307 MR 0693689, 10.1007/BF00934535
Reference: [6] Chen C. F., Hsiao C. H.: A Walsh series direct method for solving variational problems.J. Franklin Inst. 300 (1975), 265–280 Zbl 0339.49017, MR 0448874, 10.1016/0016-0032(75)90199-4
Reference: [7] Dyer P., McReynolds S. R.: The Computation and Theory of Optimal Control.Academic Press, New York 1970 Zbl 0256.49002, MR 0263490
Reference: [8] Horng I. R., Chou J. H.: Shifted Chebyshev direct method for solving variational problems.Internat. J. Systems Sci. 16 (1985), 855–861 Zbl 0568.49019, MR 0804297, 10.1080/00207728508926718
Reference: [9] Hwang C., Shih Y. P.: Laguerre series direct method for variational problems.J. Optim. Theory Appl. (1983), 143–149 Zbl 0481.49005, MR 0693680, 10.1007/BF00934611
Reference: [10] Hwang C., Shih Y. P.: Optimal control of delay systems via block pulse functions.J. Optim. Theory Appl. 45 (1985), 101–112 Zbl 0541.93031, MR 0778160, 10.1007/BF00940816
Reference: [11] Lynch R. T., Reis J. J.: Haar transform image coding.In: Proc. National Telecommun. Conference, Dallas 1976, pp. 44.3–1–44.3
Reference: [12] Ohkita M., Kobayashi Y.: An application of rationalized Haar functions to solution of linear differential equations.IEEE Trans. Circuit and Systems 9 (1986), 853–862 Zbl 0613.65072, 10.1109/TCS.1986.1086019
Reference: [13] Ohkita M., Kobayashi Y.: An application of rationalized Haar functions to solution of linear partial differential equations.Math. Comput. Simulation 30 (1988), 419–428 Zbl 0659.65109, MR 0971411, 10.1016/0378-4754(88)90055-9
Reference: [14] Phillips G. M., Taylor P. J.: Theory and Applications of Numerical Analysis.Academic Press, New York 1973 Zbl 0312.65002, MR 0343523
Reference: [15] Razzaghi M., Nazarzadeh J.: Walsh functions.Wiley Encyclopedia of Electrical and Electronics Engineering 23 (1999), 429–440
Reference: [16] Razzaghi M., Ordokhani Y.: An application of rationalized Haar functions for variational problems.Appl. Math. Math. Comput. To appear Zbl 1020.49026, MR 1842613
Reference: [17] Razzaghi M., Razzaghi, M., Arabshahi A.: Solution of convolution integral and fredholm integral equations via double Fourier series.Appl. Math. Math. Comput. 40 (1990), 215–224 MR 1082397, 10.1016/0096-3003(90)90065-B
Reference: [18] Reis J. J., Lynch R. T., Butman J.: Adaptive Haar transform video bandwidth reduction system for RPV’s.In: Proc. Ann. Meeting Soc. Photo Optic Inst. Eng. (SPIE), San Diego 1976, pp. 24–35
Reference: [19] Tikhomirov V. M.: Stories about maxima and minima.Amer. Math. Soc. (1990), 265–280 Zbl 0746.49001, MR 1152027
.

Files

Files Size Format View
Kybernetika_37-2001-5_4.pdf 1.111Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo