Previous |  Up |  Next

Article

Title: New coprime polynomial fraction representation of transfer function matrix (English)
Author: Smagina, Yelena M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 6
Year: 2001
Pages: [725]-735
Summary lang: English
.
Category: math
.
Summary: A new form of the coprime polynomial fraction $C(s)\,F(s)^{-1}$ of a transfer function matrix $G(s)$ is presented where the polynomial matrices $C(s)$ and $F(s)$ have the form of a matrix (or generalized matrix) polynomials with the structure defined directly by the controllability characteristics of a state- space model and Markov matrices $HB$, $HAB$, ... (English)
Keyword: coprime polynomial fraction
Keyword: transfer function matrix
Keyword: polynomial matrix
Keyword: Markov matrices
Keyword: state-space model
MSC: 93B05
MSC: 93B17
MSC: 93B25
MSC: 93C35
MSC: 93C80
idZBL: Zbl 1265.93063
idMR: MR1936997
.
Date available: 2009-09-24T19:43:02Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135438
.
Reference: [1] Asseo S. J.: Phase-variable canonical transformation of multicontroller system.IEEE Trans. Automat. Control AC–13 (1968), 129–131 10.1109/TAC.1968.1098823
Reference: [2] Gohberg I., Lancaster, P., Rodman L.: Matrix Polynomial.Academic Press, New York 1982 MR 0662418
Reference: [3] Davison E. J., Wang S. H.: Property and calculation of transmission zeros of linear multivariable systems.Automatica 10 (1974), 643–658 10.1016/0005-1098(74)90085-5
Reference: [4] Desoer C. A., Vidyasagar M.: Feedback Systems: Input-Output Properties.Academic Press, New York 1975 Zbl 1153.93015, MR 0490289
Reference: [5] Isidori A.: Nonlinear Control Systems.Springer, New York 1995 Zbl 0931.93005, MR 1410988
Reference: [6] Kailath T.: Linear Systems.Prentice–Hall, Englewood Cliffs, N.J. 1980 Zbl 0870.93013, MR 0569473
Reference: [7] Kwakernaak H.: Progress in the polynomial solution in the standart $H^{\infty }$ problem.In: Proc. 11 IFAC Congress, Tallinn 1990, 5, pp. 122–129
Reference: [8] Kučera V.: Discrete Linear Control – The Polynomial Equation Approach.Academia, Prague 1979 Zbl 0432.93001, MR 0573447
Reference: [9] Resende P., Silva V. V. R.: On the modal order reduction of linear multivariable systems using a block-Schwartz realization.In: Proc. 11 IFAC Congress, Tallinn 1990, 2, pp. 266–270
Reference: [10] Rosenbrock H. H.: State Space and Multivariable Theory.Thomas Nelson, London 1970 Zbl 0246.93010, MR 0325201
Reference: [11] Smagina, Ye. M.: Problems of Linear Multivariable System Analysis Using the Concept of System Zeros.Tomsk University, Tomsk 1990
Reference: [12] Smagina, Ye. M.: Definition, Determination and Application of System Zeros.Doct. Sci. Thesis, Tomsk 1994
Reference: [13] Smagina, Ye. M.: New approach to transfer function matrix factorization.In: Proc. 1997 IFAC Conference on Control of Industrial Systems, Pergamon France 1997, 1, pp. 307–312
Reference: [14] Stefanidis P., Paplinski A. P., Gibbard M. J.: Numerical operations with polynomial matrices (Lecture Notes in Control and Inform.Sciences 171). Springer, Berlin 1992 MR 1151835
Reference: [15] Tokarzewski J.: System zeros analysis via the Moore-Penrose pseudoinverse and SVD of the first nonzero Markov parameters.IEEE Trans. Automat. Control AC–43 (1998), 1285–1288 MR 1640160, 10.1109/9.718619
Reference: [16] Wolovich W. A.: On the numerators and zeros of rational transfer matrices.IEEE Trans. Automat. Control AC–18 (1973), 544–546 Zbl 0266.93017, MR 0441440, 10.1109/TAC.1973.1100393
Reference: [17] Wolovich W. A.: Linear Multivariable Systems.Springer, New York 1974 Zbl 0534.93026, MR 0359881
Reference: [18] Youla D. C., Jarb H. A., Bongiorno J. J.: Modern Wiener-Hopf design of optimal controller.Part 2: The multivariable case. IEEE Trans. Automat. Control AC–21 (1976), 319–338 MR 0446637, 10.1109/TAC.1976.1101223
Reference: [19] Yokoyama R., Kinnen E.: Phase-variable canonical forms for the multi-input, multi-output systems.Internat. J. Control 17 (1976), 1297–1312 MR 0335019, 10.1080/00207177308932475
.

Files

Files Size Format View
Kybernetika_37-2001-6_6.pdf 1.365Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo