Previous |  Up |  Next

Article

Title: Observability and observers for nonlinear systems with time delays (English)
Author: Márquez-Martínez, Luis Alejandro
Author: Moog, Claude H.
Author: Velasco-Villa, Martín
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 4
Year: 2002
Pages: [445]-456
Summary lang: English
.
Category: math
.
Summary: Basic properties on linearization by output injection are investigated in this paper. A special structure is sought which is linear up to a suitable output injection and under a suitable change of coordinates. It is shown how an observer may be designed using theory available for linear time delay systems. (English)
Keyword: nonlinear control system
Keyword: time delay
Keyword: observability
MSC: 93B07
MSC: 93B18
MSC: 93C10
MSC: 93C23
idZBL: Zbl 1265.93060
idMR: MR1937139
.
Date available: 2009-09-24T19:47:32Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135476
.
Reference: [1] Aggoune W., Bouteayeb, M., Darouach M.: Observers design for a class of nonlinear systems with time-varying delay.In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
Reference: [2] Antoniades C., Christofides D.: Robust control of nonlinear time-delay systems.Internat. J. Math. Comp. Sci. 9 (1999), 4, 811–837 Zbl 0952.93042, MR 1736672
Reference: [3] Bocharov G. A., Rihan F. A.: Numerical modelling in biosciences using delay differential equations.J. Comput. Appl. Math. 125 (2000), 183–199 Zbl 0969.65124, MR 1803191, 10.1016/S0377-0427(00)00468-4
Reference: [4] Conte G., Perdon A. M.: The disturbance decoupling problem for systems over a ring.SIAM J. Control Optim. 33 (1995), 3, 750–764 Zbl 0831.93011, MR 1327237, 10.1137/S0363012992235638
Reference: [5] Fliess M., Mounier H.: Controllability and observability of linear delay systems: an algebraic approach.ESIAM: Control, Optimization & Calculus of Variations 3 (1998), 301–314 Zbl 0908.93013, MR 1644427
Reference: [6] Germani A., Manes, C., Pepe P.: Linearization of input–output mapping for nonlinear delay systems via static state feedback.In: Symposium on Modeling Analysis & Sim., Lille 1997, pp. 599–602
Reference: [7] Germani A., Manes, C., Pepe P.: Local asymptotic stability for nonlinear state feedback delay systems.In: Proc. 6th IEEE Mediteranean Conference on Control Systems, Alghero 1998 MR 1760886
Reference: [8] Hale J.: Theory of Functional Differential Equations.Springer–Verlag, Berlin 1977 Zbl 1092.34500, MR 0508721
Reference: [9] Hale J., Verduyn S. M.: Introduction to Functional Differential Equations.Springer–Verlag, Berlin 1993 Zbl 0787.34002, MR 1243878
Reference: [10] He J.-B., Wang Q.-G., Lee T.-H.: PI/PID controller tuning via LQR approach.Chem. Engrg. Sci. 55 (2000), 2429–2439 10.1016/S0009-2509(99)00512-6
Reference: [11] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equations.Academic Press, London 1986 Zbl 0593.34070, MR 0860947
Reference: [12] Kolmanovskii V. B., Richard J. P., Tchangani A. Ph.: Some model transformations for the stability study of linear systems with delay.In: Preprints of the 1st IFAC Internat. Workshop on Linear Time-Delay Systems (J. M. Dion, L. Dugard, and M. Fliess, eds.), Lag 1998, pp. 75–80 MR 1622951
Reference: [13] Krener A., Isidori A.: Linearization by output injection and nonlinear observers.Systems Control Lett. 3 (1983), 47–52 Zbl 0524.93030, MR 0713426
Reference: [14] Krener A., Respondek W.: Nonlinear observers with linearizable error dynamics.SIAM J. Control Optim. 23 (1985), 2, 197–216 Zbl 0569.93035, MR 0777456, 10.1137/0323016
Reference: [15] Lee E. B., Olbrot A.: Observability and related structural results for linear hereditary systems.Internat. J. Control 34 (1981), 6, 1061–1078 Zbl 0531.93015, MR 0643872, 10.1080/00207178108922582
Reference: [16] Lee Y., Lee, J., Park S.: PID controller tuning for integrating and unstable PI processes with time delay.Chem. Engrg. Sci. 55 (2000), 3481–3493 10.1016/S0009-2509(00)00005-1
Reference: [17] Malek–Zavarei M., Jamshidi M.: Time–Delay Systems.Analysis, Optimization and Applications. (North Holland Systems and Control Series 9.) Elsevier, New York 1987 Zbl 0658.93001, MR 0930450
Reference: [18] Márquez–Martínez L. A., Moog C. H.: New results on the analysis and control of nonlinear time-delay systems.In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
Reference: [19] Márquez–Martínez L. A., Moog C. H.: Accessibility and Feedback Linearization of Nonlinear Time-Delay Systems.Technical Report, IRCCyN 2000
Reference: [20] Márquez–Martínez L. A., Moog C. H.: Accessibility of nonlinear time-delay systems.In: Proc. 40th IEEE Conference on Decision and Control 2001
Reference: [21] Moog C. H., Castro–Linares R., Velasco–Villa, M., Márquez–Martínez L. A.: Disturbance decoupling for time-delay nonlinear systems.IEEE Trans. Automat. Control 48 (2000), 2, 305–309 10.1109/9.839954
Reference: [22] Picard P.: Sur l’observabilité et la commande des systèmes linéaires à retards modelisés sur un anneau.Ph.D. Thesis. Université de Nantes 1996
Reference: [23] Plestan F.: Linéarisation par injection d’entrée–sortie généralisée et synthèse d’observateurs.Ph.D. Thesis. Université de Nantes / Ecole Centrale de Nantes 1995
Reference: [24] Xia X., Moog C. H.: I/O linearization of nonlinear systems by output feedback.In: Proc. 35th IEEE Conference on Decision and Control, Kobe 1996
.

Files

Files Size Format View
Kybernetika_38-2002-4_4.pdf 1.406Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo