Previous |  Up |  Next

Article

Title: On improving sensitivity of the Kalman filter (English)
Author: Franěk, Petr
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 4
Year: 2002
Pages: [425]-443
Summary lang: English
.
Category: math
.
Summary: The impact of additive outliers on a performance of the Kalman filter is discussed and less outlier-sensitive modification of the Kalman filter is proposed. The improved filter is then used to obtain an improved smoothing algorithm and an improved state-space model parameters estimation. (English)
Keyword: outliers
Keyword: smoothing algorithm
Keyword: parameters estimation
MSC: 62M20
MSC: 65C60
MSC: 93B35
MSC: 93E11
idZBL: Zbl 1264.62083
idMR: MR1937138
.
Date available: 2009-09-24T19:47:25Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135475
.
Reference: [1] Anderson B. D. O., Moore J. B.: Optimal Filtering.Prentice–Hall, Englewood Cliffs, N. J. 1979 Zbl 1191.93133
Reference: [2] Box G. E. P., Tiao G. C.: Bayesian Inference in Statistical Analysis.Addison–Wesley, London 1973 Zbl 0850.62004, MR 0418321
Reference: [3] Cantarelis N., Johnston F. R.: On-line variance estimation for the steady state Bayesian forecasting model.J. Time Ser. Analysis 3 (1982), 225–234 Zbl 0502.62084, MR 0703085, 10.1111/j.1467-9892.1982.tb00345.x
Reference: [4] Cipra T.: Some modifications of recursive time series methods.In: ROBUST ’96 – Collection of Discussion Papers, Union of the Czech Mathematicians and Physicists, Praha 1997
Reference: [5] Cipra T., Rubio A.: Kalman filter with a non-linear non-gaussian observation relation.Trabajos de Estadistica 6 (1991), 111–119 Zbl 0748.62052, 10.1007/BF02873526
Reference: [6] Cipra T., Rubio, A., Canal J. L.: Robust smoothing and forecasting procedures.Central European J. Oper. Research 1 (1992), 41–56
Reference: [7] Durbin J., Koopman S. J.: Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives.J. Roy. Statist. Soc. 62 (2000), 3–56 MR 1745604, 10.1111/1467-9868.00218
Reference: [8] Franěk P.: Kalman Filter.KPMS Seminair Works Series, MFF UK, Praha 1999
Reference: [9] Hosking J. R. M., Pai J. S., Wu L. S.+ Y.: An algorithm for estimating parameters of state-space models.Statist. Probab. Letters 28 (1996), 99–106 Zbl 0852.62090, MR 1394658, 10.1016/0167-7152(95)00098-4
Reference: [10] Jazwinski A. H.: Stochastic Processes and Filtering Theory.Academic Press, New York 1972 Zbl 0203.50101
Reference: [11] Kalman R. E.: A new approach to linear filtering and prediction problems.Trans. Amer. Soc. Mech. Eng. – J. Basic Eng. 82 (1960), 35–45 10.1115/1.3662552
Reference: [12] Kitagawa G.: Non-Gaussian state-space modelling of nonstationary time series.J. Amer. Statist. Assoc. 82 (1987), 1032–1050 Zbl 0644.62088, MR 0922169
Reference: [13] Kitagawa G.: Self-organizing state-space model.J. Amer. Statist. Assoc. 93 (1998), 1203-1215 10.2307/2669862
Reference: [14] Künsch H. R.: State space and hidden Markov models.In: Complex Stochastic Systems (O. E. Barndorf-Nielsen, D. R. Cox, and C. Klüppelberg, eds.), Chapman & Hall / CRC, Boca Raton 2001, pp. 109–173 Zbl 1002.62072, MR 1893412
Reference: [15] Masreliez C. J.: Approximate non-Gaussian filtering with linear state and observation relations.IEEE Trans. Automat. Control AC-20 (1975), 107–110 Zbl 0298.93018, 10.1109/TAC.1975.1100882
Reference: [16] Masreliez C. J., Martin R. D.: Robust Bayesian estimation for the linear model and robustifying the Kalman filter.IEEE Trans. Automat. Control AC-22 (1975), 361–371 MR 0453124, 10.1109/TAC.1977.1101538
Reference: [17] Meinhold R. J., Singpurwalla N. Z.: Robustification of the Kalman filter.J. Amer. Statist. Assoc. 84 (1989), 479–486 MR 1010336, 10.1080/01621459.1989.10478794
Reference: [18] Ruckdeschel P.: Ansätze zur Robustifizierung des Kalman-filters.Doctoral Thesis, Bayreuth University, Bayreuth 2001 Zbl 0995.93001, MR 1884972
Reference: [19] Tanizaki H.: Nonlinear and non-Gaussian state estimation: A quasi-optimal estimator.Comm. Statist. – Theory Methods 29 (2000), 2805–2834 Zbl 1016.93068, MR 1804265, 10.1080/03610920008832638
.

Files

Files Size Format View
Kybernetika_38-2002-4_3.pdf 2.773Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo