Previous |  Up |  Next

Article

Title: Characterization of generic properties of linear structured systems for efficient computations (English)
Author: Commault, Christian
Author: Dion, Jean-Michel
Author: van der Woude, Jacob W.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 5
Year: 2002
Pages: [503]-520
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate some of the computational aspects of generic properties of linear structured systems. In such systems only the zero/nonzero pattern of the system matrices is assumed to be known. For structured systems a number of characterizations of so-called generic properties have been obtained in the literature. The characterizations often have been presented by means of the graph associated to a linear structured system and are then expressed in terms of the maximal or minimal number of certain type of vertices contained in a combination of specific paths. In this paper we give new graph theoretic characterizations of structural invariants of structured systems. It turns out that these new characterizations allow to compute these invariants via standard and efficient algorithms from combinatorial optimization. (English)
Keyword: linear structured system
Keyword: graph theoretic characterizations of structural invariants
MSC: 93B10
MSC: 93B40
MSC: 93C05
MSC: 94C15
idZBL: Zbl 1265.93120
idMR: MR1966942
.
Date available: 2009-09-24T19:48:20Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135483
.
Reference: [1] Commault C., Dion J. M., Perez A.: Disturbance rejection for structured systems.IEEE Trans. Automat. Control AC-36 (1991), 884–887 Zbl 0754.93023, MR 1109830, 10.1109/9.85072
Reference: [2] Descusse J., Dion J. M.: On the structure at infinity of linear square decouplable systems.IEEE Trans. Automat. Control AC-27 (1982), 971–974 MR 0680500, 10.1109/TAC.1982.1103041
Reference: [3] Dion J. M., Commault C.: Smith–McMillan factorisations at infinity of rational matrix functions and their control interpretation.Systems Control Lett. 1 (1982), 312–320 MR 0670218, 10.1016/S0167-6911(82)80029-7
Reference: [4] Dion J. M., Commault C.: Feedback decoupling of structured systems.IEEE Trans. Automat. Control AC-38 (1993), 1132–1135 Zbl 0800.93470, MR 1235238, 10.1109/9.231471
Reference: [5] Dion J. M., Commault, C., Montoya J.: Simultaneous decoupling and disturbance rejection – a structural approach.Internat. J. Control 59 (1994), 1325–1344 Zbl 0800.93477, MR 1277265, 10.1080/00207179408923133
Reference: [6] Glover K., Silverman L. M.: Characterization of structural controllability.IEEE Trans. Automat. Control AC-21 (1976), 534–537 Zbl 0332.93012, MR 0424299, 10.1109/TAC.1976.1101257
Reference: [7] Gondran M., Minoux M.: Graphs and Algorithms.Wiley, New York 1984 Zbl 1172.05001, MR 0745802
Reference: [8] Hopcroft J. E., Karp R. M.: An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs.SIAM J. Comput. 2 (1973), 225–231 MR 0337699, 10.1137/0202019
Reference: [9] Hosoe S.: Determination of generic dimensions of controllable subspaces and applications.IEEE Trans. Automat. Control AC-25 (1980), 1192–1196 MR 0601504, 10.1109/TAC.1980.1102506
Reference: [10] Hovelaque V.: Analyse Structurelle, Géométrique, et Graphique des Systèmes Linéaires Structurés, Thèse de Doctorat.Inst. Nat. Polytechnique de Grenoble 1997
Reference: [11] Hovelaque V., Commault, C., Dion J. M.: Analysis of linear structured systems using a primal-dual algorithm.Systems Control Lett. 27 (1996), 73–85 Zbl 0875.93117, MR 1388501, 10.1016/0167-6911(95)00039-9
Reference: [12] Hovelaque V., Commault, C., Dion J. M.: Disturbance decoupling for linear structured systems via a primal-dual algorithm.Comp. Engrg. Syst. Appl. IMACS Lille (1996), 455–459
Reference: [13] Hovelaque V., Djidi N., Commault, C., Dion J. M.: Decoupling problem for structured systems via a primal-dual algorithm.In: Proc. European Control Conference (ECC97), Brussels 1997
Reference: [14] Kuhn H. W.: The Hungarian method for the assignment problem.Nav. Res. Log. Quat. 2 (1955), 83–97 Zbl 0143.41905, MR 0075510, 10.1002/nav.3800020109
Reference: [15] Lin C. T.: Structural controllability.IEEE Trans. Automat. Control AC-19 (1974), 201–208 Zbl 0343.93009, MR 0452870, 10.1109/TAC.1974.1100557
Reference: [16] Linnemann A.: Decoupling of structured systems.Systems Control Lett. 1 (1981), 79–86 Zbl 0475.93049, MR 0670045, 10.1016/S0167-6911(81)80040-0
Reference: [17] Murota K.: System analysis by graphs and matroids, Algorithms and Combinatorics.Springer–Verlag, New York 1987 MR 0897529
Reference: [18] Reinschke K. J.: Multivariable Control: A Graph–heoretic Approach.Springer–Verlag, New York 1988 MR 0962644
Reference: [19] Röbenack K., Reinschke K. J.: Digraph based determination of Jordan block size structure of singular matrix pencils.Linear Algebra Appl. 275–276 (1998), 495–507 Zbl 0934.15012, MR 1628406
Reference: [20] Schizas C., Evans F. J.: A graph theoretic approach to multivariable control system design.Automatica 17 (1981), 371–377 Zbl 0476.93041, 10.1016/0005-1098(81)90054-6
Reference: [21] Shields R. W., Pearson J. B.: Structural controllability of multi-input linear systems.IEEE Trans. Automat. Control AC-21 (1976), 203–212 MR 0462690, 10.1109/TAC.1976.1101198
Reference: [22] Söte W.: Eine graphische Methode zur Ermittlung der Nullstellen in Mehrgrössensystemen.Reglungstechnik 28 (1980), 346–348 Zbl 0459.93027
Reference: [23] Suda N., Wan, B., Ueno I.: The orders of infinite zeros of structured systems.Trans. Soc. Instr. Control Engineers 25 (1989), 346–348
Reference: [24] Woude J. W. van der: On the structure at infinity of a structured system.Linear Algebra Appl. 148 (1991), 145–169 MR 1090758
Reference: [25] Woude J. W. van der: The generic number of invariant zeros of a structured linear system.SIAM J. Control Optim. 38 (2000), 1, 1–21 MR 1740610, 10.1137/S0363012996310119
Reference: [26] Woude J. W. van der: The generic canonical form of a regular structured matrix pencil.Linear Algebra Appl. 353 (2002), 267–288 MR 1919642
Reference: [27] Woude J. W. van der, Commault, C., Dion J. M.: Invariants for linear structured systems.Internal report of the Laboratoire d’Automatique de Grenoble 2000
Reference: [28] Yamada T.: A network flow algorithm to find an elementary I/O matching.Networks 18 (1988), 105–109 Zbl 0641.90039, MR 0939147, 10.1002/net.3230180203
.

Files

Files Size Format View
Kybernetika_38-2002-5_2.pdf 2.448Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo