Previous |  Up |  Next

Article

Title: Parametrization and reliable extraction of proper compensators (English)
Author: Kraffer, Ferdinand
Author: Zagalak, Petr
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 5
Year: 2002
Pages: [521]-540
Summary lang: English
.
Category: math
.
Summary: The polynomial matrix equation $X_lD_r$ $+$ $Y_lN_r$ $=$ $D_k$ is solved for those $X_l$ and $Y_l$ that give proper transfer functions $X_l^{-1}Y_l$ characterizing a subclass of compensators, contained in the class whose arbitrary element can be cascaded to a plant with the given strictly proper transfer function $N_rD_r^{-1}$ such that wrapping the negative unity feedback round the cascade gives a system whose poles are specified by $D_k$. The subclass is navigated and extracted through a conventional parametrization whose denominators are affine to row echelon form and the centre is in a compensator whose numerator has minimum column degrees. Applications include stabilization of linear multivariable systems. (English)
Keyword: compensator
Keyword: stabilization
MSC: 93B52
MSC: 93C05
MSC: 93D15
MSC: 93D21
idZBL: Zbl 1265.93122
idMR: MR1966943
.
Date available: 2009-09-24T19:48:27Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135484
.
Reference: [1] Callier F. M.: Proper feedback compensators for a strictly proper plant by solving polynomial equations.In: Proc. MMAR 2000. Miedzyzdroje 2000, pp. 55–59
Reference: [2] Callier F. M.: Polynomial equations giving a proper feedback compensator for a strictly proper plant.In: Proc. 1st IFAC Symposium on System Structure and Control, Prague 2001
Reference: [3] Callier F. M., Desoer C. A.: Multivariable Feedback Systems.Springer, New York 1982
Reference: [4] Forney G. D.: Minimal bases of rational vector spaces, with applications to multivariable linear systems.SIAM J. Control 13 (1975), 493–520 Zbl 0269.93011, MR 0378886, 10.1137/0313029
Reference: [5] Golub G. H., Loan C. F. Van: Matrix Computations.North Oxford Academic, Oxford 1989
Reference: [6] Kailath T.: Linear Systems.Prentice Hall, Englewood Cliffs, N. J. 1980 Zbl 0870.93013, MR 0569473
Reference: [7] Kučera V., Zagalak P.: Proper solutions of polynomial equations.In: Proc. IFAC World Congress, Pergamon, Oxford 1999, pp. 357–362
Reference: [8] MacDuffee C. C.: The Theory of Matrices.Springer, Berlin 1933 Zbl 0007.19507
Reference: [9] Popov V. M.: Some properties of the control systems with irreducible matrix transfer functions.(Lecture Notes in Mathematics 144.) Springer, Berlin 1969, pp. 169–180 MR 0395958, 10.1007/BFb0059934
Reference: [10] Rosenbrock H. H.: State-space and Multivariable Theory.Nelson, London 1970 Zbl 0246.93010, MR 0325201
Reference: [11] Rosenbrock H. H., Hayton G. E.: The general problem of pole assignment.Internat. J. Control 27 (1978), 837–852 Zbl 0403.93017, MR 0497005, 10.1080/00207177808922416
Reference: [12] Dooren P. M. Van: The generalized eigenstructure problem in linear system theory.IEEE Trans. Automat. Control AC-26 (1981), 111–129 MR 0609253, 10.1109/TAC.1981.1102559
Reference: [13] Vidyasagar M.: Control System Synthesis.MIT Press, Cambridge, MA 1985 Zbl 0655.93001, MR 0787045
Reference: [14] Wang S. H., Davison E. J.: A minimization algorithm for the design of linear multivariable systems.IEEE Trans. Automat. Control AC-18 (1973), 220–225 Zbl 0261.93010, MR 0441434, 10.1109/TAC.1973.1100283
Reference: [15] Wedderburn J.: Lectures on Matrices.American Mathematical Society, Providence, R.I. 1934 Zbl 0176.30501
Reference: [16] Wolovich W. A.: Linear Multivariable Systems.Springer, New York 1974 Zbl 0534.93026, MR 0359881
Reference: [17] Zagalak P., Kučera V.: The general problem of pole assignment: a polynomial approach.IEEE Trans. Automat. Control AC-30 (1985), 286–289 MR 0778436, 10.1109/TAC.1985.1103920
.

Files

Files Size Format View
Kybernetika_38-2002-5_3.pdf 2.807Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo