Title:
|
Parametrization and reliable extraction of proper compensators (English) |
Author:
|
Kraffer, Ferdinand |
Author:
|
Zagalak, Petr |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
38 |
Issue:
|
5 |
Year:
|
2002 |
Pages:
|
[521]-540 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The polynomial matrix equation $X_lD_r$ $+$ $Y_lN_r$ $=$ $D_k$ is solved for those $X_l$ and $Y_l$ that give proper transfer functions $X_l^{-1}Y_l$ characterizing a subclass of compensators, contained in the class whose arbitrary element can be cascaded to a plant with the given strictly proper transfer function $N_rD_r^{-1}$ such that wrapping the negative unity feedback round the cascade gives a system whose poles are specified by $D_k$. The subclass is navigated and extracted through a conventional parametrization whose denominators are affine to row echelon form and the centre is in a compensator whose numerator has minimum column degrees. Applications include stabilization of linear multivariable systems. (English) |
Keyword:
|
compensator |
Keyword:
|
stabilization |
MSC:
|
93B52 |
MSC:
|
93C05 |
MSC:
|
93D15 |
MSC:
|
93D21 |
idZBL:
|
Zbl 1265.93122 |
idMR:
|
MR1966943 |
. |
Date available:
|
2009-09-24T19:48:27Z |
Last updated:
|
2015-03-25 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135484 |
. |
Reference:
|
[1] Callier F. M.: Proper feedback compensators for a strictly proper plant by solving polynomial equations.In: Proc. MMAR 2000. Miedzyzdroje 2000, pp. 55–59 |
Reference:
|
[2] Callier F. M.: Polynomial equations giving a proper feedback compensator for a strictly proper plant.In: Proc. 1st IFAC Symposium on System Structure and Control, Prague 2001 |
Reference:
|
[3] Callier F. M., Desoer C. A.: Multivariable Feedback Systems.Springer, New York 1982 |
Reference:
|
[4] Forney G. D.: Minimal bases of rational vector spaces, with applications to multivariable linear systems.SIAM J. Control 13 (1975), 493–520 Zbl 0269.93011, MR 0378886, 10.1137/0313029 |
Reference:
|
[5] Golub G. H., Loan C. F. Van: Matrix Computations.North Oxford Academic, Oxford 1989 |
Reference:
|
[6] Kailath T.: Linear Systems.Prentice Hall, Englewood Cliffs, N. J. 1980 Zbl 0870.93013, MR 0569473 |
Reference:
|
[7] Kučera V., Zagalak P.: Proper solutions of polynomial equations.In: Proc. IFAC World Congress, Pergamon, Oxford 1999, pp. 357–362 |
Reference:
|
[8] MacDuffee C. C.: The Theory of Matrices.Springer, Berlin 1933 Zbl 0007.19507 |
Reference:
|
[9] Popov V. M.: Some properties of the control systems with irreducible matrix transfer functions.(Lecture Notes in Mathematics 144.) Springer, Berlin 1969, pp. 169–180 MR 0395958, 10.1007/BFb0059934 |
Reference:
|
[10] Rosenbrock H. H.: State-space and Multivariable Theory.Nelson, London 1970 Zbl 0246.93010, MR 0325201 |
Reference:
|
[11] Rosenbrock H. H., Hayton G. E.: The general problem of pole assignment.Internat. J. Control 27 (1978), 837–852 Zbl 0403.93017, MR 0497005, 10.1080/00207177808922416 |
Reference:
|
[12] Dooren P. M. Van: The generalized eigenstructure problem in linear system theory.IEEE Trans. Automat. Control AC-26 (1981), 111–129 MR 0609253, 10.1109/TAC.1981.1102559 |
Reference:
|
[13] Vidyasagar M.: Control System Synthesis.MIT Press, Cambridge, MA 1985 Zbl 0655.93001, MR 0787045 |
Reference:
|
[14] Wang S. H., Davison E. J.: A minimization algorithm for the design of linear multivariable systems.IEEE Trans. Automat. Control AC-18 (1973), 220–225 Zbl 0261.93010, MR 0441434, 10.1109/TAC.1973.1100283 |
Reference:
|
[15] Wedderburn J.: Lectures on Matrices.American Mathematical Society, Providence, R.I. 1934 Zbl 0176.30501 |
Reference:
|
[16] Wolovich W. A.: Linear Multivariable Systems.Springer, New York 1974 Zbl 0534.93026, MR 0359881 |
Reference:
|
[17] Zagalak P., Kučera V.: The general problem of pole assignment: a polynomial approach.IEEE Trans. Automat. Control AC-30 (1985), 286–289 MR 0778436, 10.1109/TAC.1985.1103920 |
. |