Title:
|
$T$-equivalences generated by shape function on the real line (English) |
Author:
|
Hong, Dug Hun |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
39 |
Issue:
|
3 |
Year:
|
2003 |
Pages:
|
[281]-288 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is devoted to give a new method of generating T-equivalence using shape function and finding the exact calculation formulas of T-equivalence induced by shape function on the real line. Some illustrative examples are given. (English) |
Keyword:
|
fuzzy number |
Keyword:
|
fuzzy relation |
Keyword:
|
t-norm |
Keyword:
|
T-equivalence |
Keyword:
|
shape function |
MSC:
|
03E02 |
MSC:
|
03E72 |
MSC:
|
26A21 |
MSC:
|
26E50 |
idZBL:
|
Zbl 1249.26006 |
idMR:
|
MR1995731 |
. |
Date available:
|
2009-09-24T19:53:39Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135529 |
. |
Reference:
|
[1] Baets B. De, Marková A.: Analytical for the addition of fuzzy intervals.Fuzzy Sets and Systems 91 (1997), 203–213 MR 1480046, 10.1016/S0165-0114(97)00141-3 |
Reference:
|
[2] Baets B. De, Mareš, M., Mesiar R.: T-partition of the real line generated by impotent shapes.Fuzzy Sets and Systems 91 (1997), 177–184 MR 1480044 |
Reference:
|
[3] Baets B. De, Mesiar R.: Pseudo-metrics and T-equivalence.J. Fuzzy Math. 5 (1997), 471–481 MR 1457163 |
Reference:
|
[4] Harrison M. A.: Introduction to Switching and Automata Theory.McGraw–Hill, New York 1965 Zbl 0196.51702, MR 0186503 |
Reference:
|
[5] Hong D. H., Hwang S. Y.: On the convergence of T-sum of L-R fuzzy numbers.Fuzzy Sets and Systems 63 (1994), 175–180 Zbl 0844.04004, MR 1275891, 10.1016/0165-0114(94)90347-6 |
Reference:
|
[6] Hong D. H., Hwang C.: A T-sum bound of L-R fuzzy numbers.Fuzzy Sets and Systems 91 (1997), 239–252 MR 1480049, 10.1016/S0165-0114(97)00144-9 |
Reference:
|
[7] Hong D. H., Ro P.: The law of large numbers for fuzzy numbers with bounded supports.Fuzzy Sets and Systems 116 (2000), 269–274 MR 1788398 |
Reference:
|
[8] Jacas J., Recasens J.: Fuzzy numbers and equality relations.In: Proc. 2nd IEEE International Conference on Fuzzy Systems, San Francisco 1993, pp. 1298–1301 |
Reference:
|
[9] Ling C.: Representation of associative function.Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575 |
Reference:
|
[10] Mareš M., Mesiar R.: Composition of shape generators.Acta Mathematica et Informatica Universitatis Ostravienses 4 (1996), 37–46 Zbl 0870.04003, MR 1446782 |
Reference:
|
[11] Mareš M., Mesiar R.: Fuzzy quantities and their aggregation, in aggregation operations.In: New Trends and Applications. Physica–Verlag, Heidelberg 2002, pp. 291–352 MR 1936394 |
Reference:
|
[12] Marková–Stupňanová A.: Idempotents of T-addition of fuzzy numbers.Tatra Mt. Math. Publ. 12 (1997), 67–72 Zbl 0954.03059, MR 1607198 |
Reference:
|
[13] Mesiar R.: A note to T-sum of L-R fuzzy numbers.Fuzzy Sets and Systems 87 (1996), 259–261 MR 1388398, 10.1016/0165-0114(95)00178-6 |
Reference:
|
[14] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1983 Zbl 0546.60010, MR 0790314 |
. |