Previous |  Up |  Next

Article

Title: An additive decomposition of fuzzy numbers (English)
Author: Hong, Dug Hun
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 3
Year: 2003
Pages: [289]-294
Summary lang: English
.
Category: math
.
Summary: Hong and Do[4] improved Mareš[7] result about additive decomposition of fuzzy quantities concerning an equivalence relation. But there still exists an open question which is the limitation to fuzzy quantities on R (the set of real numbers) with bounded supports in the presented theory. In this paper we restrict ourselves to fuzzy numbers, which are fuzzy quantities of the real line R with convex, normalized and upper semicontinuous membership function and prove this open question. (English)
Keyword: fuzzy number
Keyword: fuzzy quantity
Keyword: equivalence of fuzzy number
MSC: 03E02
MSC: 03E72
idZBL: Zbl 1249.03094
idMR: MR1995732
.
Date available: 2009-09-24T19:53:46Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135530
.
Reference: [1] Dubois D., Prade H.: Fuzzy Sets and Systems.Academic Press, New York – London 1980 Zbl 0444.94049, MR 0589341
Reference: [2] Dubois D., Prade H.: Fuzzy numbers.An overview. In: Analysis of Fuzzy Information, Vol. I (J. Bezdek, ed.), CRS, Boca Raton 1987, pp. 3–39 Zbl 0663.94028, MR 0910312
Reference: [3] Dubois D., Prade H.: Linear programming with fuzzy data.In: Analysis of Fuzzy Information, Vol. 3: Applications in Engineering and Science (J. Bezdek, ed.), CRS, Boca Raton 1987, pp. 241–261 MR 0910341
Reference: [4] Hong D. H., Do H. Y.: Additive decomposition of fuzzy quantities.Inform. Sci. 88 (1996), 201–207 Zbl 0879.90003, MR 1375366, 10.1016/0020-0255(95)00163-8
Reference: [5] Kaufmann A., Gupta M. M.: Information to Fuzzy Arithmetic Theory and Application.Van Nostrand Reinhold, New York 1991 MR 1132439
Reference: [6] Kaufmann A., Gupta M. M.: Fuzzy Mathematical Models in Engineering and Management Science.North–Holland, Amsterdam 1988 Zbl 0683.90024, MR 0968213
Reference: [7] Mareš M.: Additive decomposition of fuzzy quantities with finite supports.Fuzzy Sets and Systems 47 (1992), 341–346 MR 1166282, 10.1016/0165-0114(92)90299-J
Reference: [8] Mareš M.: Additive of fuzzy quantities: disjunction-conjunction approach.Kybernetika 25 (1989), 1–12 MR 0987852
Reference: [9] Mareš M., Horák J.: Fuzzy quantities in networks.Fuzzy Sets and Systems 10 (1993), 123–134 10.1016/S0165-0114(83)80110-9
Reference: [10] Mareš M.: Network analysis of fuzzy technologies.In: Fuzzy Methodologies for Industrial and Systems Engineering (G. Evans, W. Karwowski, and M. Wilhelm, eds.), Elsevier, Amsterdam 1989, pp. 115–125
Reference: [11] Mareš M.: How to satisfy fuzzy manager.Ekonomicko-matematický obzor 24 (1988), 396–404 MR 0988256
Reference: [12] Pinter C. C.: Set Theory.Addition–Wesley, New York 1971 Zbl 0218.04001, MR 0284349
Reference: [13] Rudin W.: Principles of Mathematical Analysis.McGraw–Hill, New York 1964 Zbl 0346.26002, MR 0166310
.

Files

Files Size Format View
Kybernetika_39-2003-3_4.pdf 625.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo