Title:
|
An additive decomposition of fuzzy numbers (English) |
Author:
|
Hong, Dug Hun |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
39 |
Issue:
|
3 |
Year:
|
2003 |
Pages:
|
[289]-294 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Hong and Do[4] improved Mareš[7] result about additive decomposition of fuzzy quantities concerning an equivalence relation. But there still exists an open question which is the limitation to fuzzy quantities on R (the set of real numbers) with bounded supports in the presented theory. In this paper we restrict ourselves to fuzzy numbers, which are fuzzy quantities of the real line R with convex, normalized and upper semicontinuous membership function and prove this open question. (English) |
Keyword:
|
fuzzy number |
Keyword:
|
fuzzy quantity |
Keyword:
|
equivalence of fuzzy number |
MSC:
|
03E02 |
MSC:
|
03E72 |
idZBL:
|
Zbl 1249.03094 |
idMR:
|
MR1995732 |
. |
Date available:
|
2009-09-24T19:53:46Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135530 |
. |
Reference:
|
[1] Dubois D., Prade H.: Fuzzy Sets and Systems.Academic Press, New York – London 1980 Zbl 0444.94049, MR 0589341 |
Reference:
|
[2] Dubois D., Prade H.: Fuzzy numbers.An overview. In: Analysis of Fuzzy Information, Vol. I (J. Bezdek, ed.), CRS, Boca Raton 1987, pp. 3–39 Zbl 0663.94028, MR 0910312 |
Reference:
|
[3] Dubois D., Prade H.: Linear programming with fuzzy data.In: Analysis of Fuzzy Information, Vol. 3: Applications in Engineering and Science (J. Bezdek, ed.), CRS, Boca Raton 1987, pp. 241–261 MR 0910341 |
Reference:
|
[4] Hong D. H., Do H. Y.: Additive decomposition of fuzzy quantities.Inform. Sci. 88 (1996), 201–207 Zbl 0879.90003, MR 1375366, 10.1016/0020-0255(95)00163-8 |
Reference:
|
[5] Kaufmann A., Gupta M. M.: Information to Fuzzy Arithmetic Theory and Application.Van Nostrand Reinhold, New York 1991 MR 1132439 |
Reference:
|
[6] Kaufmann A., Gupta M. M.: Fuzzy Mathematical Models in Engineering and Management Science.North–Holland, Amsterdam 1988 Zbl 0683.90024, MR 0968213 |
Reference:
|
[7] Mareš M.: Additive decomposition of fuzzy quantities with finite supports.Fuzzy Sets and Systems 47 (1992), 341–346 MR 1166282, 10.1016/0165-0114(92)90299-J |
Reference:
|
[8] Mareš M.: Additive of fuzzy quantities: disjunction-conjunction approach.Kybernetika 25 (1989), 1–12 MR 0987852 |
Reference:
|
[9] Mareš M., Horák J.: Fuzzy quantities in networks.Fuzzy Sets and Systems 10 (1993), 123–134 10.1016/S0165-0114(83)80110-9 |
Reference:
|
[10] Mareš M.: Network analysis of fuzzy technologies.In: Fuzzy Methodologies for Industrial and Systems Engineering (G. Evans, W. Karwowski, and M. Wilhelm, eds.), Elsevier, Amsterdam 1989, pp. 115–125 |
Reference:
|
[11] Mareš M.: How to satisfy fuzzy manager.Ekonomicko-matematický obzor 24 (1988), 396–404 MR 0988256 |
Reference:
|
[12] Pinter C. C.: Set Theory.Addition–Wesley, New York 1971 Zbl 0218.04001, MR 0284349 |
Reference:
|
[13] Rudin W.: Principles of Mathematical Analysis.McGraw–Hill, New York 1964 Zbl 0346.26002, MR 0166310 |
. |