Previous |  Up |  Next

Article

Title: Consistency-driven approximation of a pairwise comparison matrix (English)
Author: Dopazo, Esther
Author: González-Pachón, Jacinto
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 5
Year: 2003
Pages: [561]-568
Summary lang: English
.
Category: math
.
Summary: The pairwise comparison method is an interesting technique for building a global ranking from binary comparisons. In fact, some web search engines use this method to quantify the importance of a set of web sites. The purpose of this paper is to search a set of priority weights from the preference information contained in a general pairwise comparison matrix; i.e., a matrix without consistency and reciprocity properties. For this purpose, we consider an approximation methodology within a distance-based framework. In this context, Goal Programming is introduced as a flexible tool for computing priority weights. (English)
Keyword: ranking theory
Keyword: pairwise comparison
Keyword: distance-based methods
Keyword: goal programming
MSC: 90B50
MSC: 90C29
MSC: 91B08
idZBL: Zbl 1249.91025
idMR: MR2042341
.
Date available: 2009-09-24T19:56:44Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135555
.
Reference: [1] Brin S., Page L.: The anatomy of a large-scale hypertextual web search engine.Computer Networks and ISDN Systems 30 (1998), 107–117 10.1016/S0169-7552(98)00110-X
Reference: [2] Charnes A., Cooper W. W.: Goal programming and multiple objective optimization: Part 1.European J. Oper. Res. 1 (1977), 39–54 MR 0452646, 10.1016/S0377-2217(77)81007-2
Reference: [3] Chu M. T.: On the optimal consistent approximation to pairwise comparison matrices.Linear Algebra Appl. 272 (1998), 155–168 Zbl 0905.62005, MR 1489384
Reference: [4] González-Pachón J., Romero C.: Distance-based consensus methods: a goal programming approach.Omega 27 (1999), 341–347 10.1016/S0305-0483(98)00052-8
Reference: [5] Ignizio J. P., Cavalier T. M.: Linear Programming.Prentice-Hall, Englewood Cliffs, N.J. 1994
Reference: [6] Jensen R. E.: An alternative scaling method for priorities in hierarchical structures.J. Math. Psychology 28 (1984), 317–332 10.1016/0022-2496(84)90003-8
Reference: [7] Kendall M. G.: Further contributions to the theory of paired comparisons.Biometrics 11 (1955), 43–62 MR 0075506, 10.2307/3001479
Reference: [8] Koczkodaj W., Orlowski M.: Computing a consistent approximation to a generalized pairwise comparisons matrix.Comput. Math. Appl. 37 (1999), 79–85 Zbl 0936.65057, MR 1674423, 10.1016/S0898-1221(99)00048-6
Reference: [9] Romero C.: Handbook of Critical Issues in Goal Programming.Pergamon Press, London 1991 Zbl 0817.68034
Reference: [10] Saaty T. L.: The Analytic Hierarchy Process.McGraw-Hill, New York 1980 Zbl 1184.90094, MR 0773297
Reference: [11] Saaty T. L., Vargas L. G.: Comparison of eigenvalues, logarithmic least square and least square methods in estimating ratios.Math. Model. 5 (1984), 309–324 MR 0781652, 10.1016/0270-0255(84)90008-3
Reference: [12] Wei T. H.: The Algebraic Foundations of Ranking Theory.Cambridge Univ. Press, Cambridge 1952
.

Files

Files Size Format View
Kybernetika_39-2003-5_5.pdf 1.218Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo