Title:
|
S-implications and $R$-implications on a finite chain (English) |
Author:
|
Mas, Margarita |
Author:
|
Monserrat, Miquel |
Author:
|
Torrens, Joan |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
40 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
[3]-20 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is devoted to the study of two kinds of implications on a finite chain $L$: $S$-implications and $R$-implications. A characterization of each kind of these operators is given and a lot of different implications on $L$ are obtained, not only from smooth t-norms but also from non smooth ones. Some additional properties on these implications are studied specially in the smooth case. Finally, a class of non smooth t-norms including the nilpotent minimum is characterized. Any t-norm in this class satisfies that both, its $S$-implication and its $R$-implication, agree. (English) |
Keyword:
|
t-norm |
Keyword:
|
T-conorm |
Keyword:
|
finite chain |
Keyword:
|
smoothness |
Keyword:
|
implication operator |
MSC:
|
03B52 |
MSC:
|
06F05 |
MSC:
|
94D05 |
idZBL:
|
Zbl 1249.94094 |
idMR:
|
MR2068595 |
. |
Date available:
|
2009-09-24T19:59:02Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135575 |
. |
Reference:
|
[1] Baets B. De: Model implicators and their characterization.In: Proc. First ICSC Internat. Symposium on Fuzzy Logic, Zürich, Switzerland (N. Steele, ed.). ICSC Academic Press 1995, pp. A42–A49 |
Reference:
|
[2] Baets B. De, Fodor J. C.: On the structure of uninorms and their residual implicators.In: Proc. 18th Linz Seminar on Fuzzy Set Theory, Linz, Austria 1997, pp. 81–87 |
Reference:
|
[3] Baets B. De, Fodor J. C.: Residual operators of representable uninorms.In: Proc. Fifth European Congress on Intelligent Techniques and Soft Computing, Volume 1 (H. J. Zimmermann, ed.), ELITE, Aachen, Germany 1997, pp. 52–56 |
Reference:
|
[4] Baets B. De, Mesiar R.: Residual implicators of continuous t-norms.In: Proc. Fourth European Congress on Intelligent Techniques and Soft Computing, Volume 1 (H. J. Zimmermann, ed.), ELITE, Aachen, Germany 1997, pp. 27–31 |
Reference:
|
[5] Baets B. De, Mesiar R.: Triangular norms on product lattices.Fuzzy Sets and Systems 104 (1999), 61–75 Zbl 0935.03060, MR 1685810, 10.1016/S0165-0114(98)00259-0 |
Reference:
|
[6] Bustince H., Burillo, P., Soria F.: Automorphisms, negations and implication operators.Fuzzy Sets and Systems 134 (2003), 209–229 MR 1969102, 10.1016/S0165-0114(02)00214-2 |
Reference:
|
[7] Cignoli R., Esteva F., Godo, L., Montagna F.: On a class of left-continuous t-norms.Fuzzy Sets and Systems 131 (2002), 283–296 MR 1939841, 10.1016/S0165-0114(01)00215-9 |
Reference:
|
[8] Cignoli R., Esteva F., Godo, L., Torrens A.: Basic fuzzy logic is the logic of continuous t-norms and their residua.Soft Computing 4 (2000), 106–112 10.1007/s005000000044 |
Reference:
|
[9] Cignoli R., D’Ottaviano, I., Mundici D.: Algebraic Foundations of Many-valued Reasoning.Kluwer, Dordrecht 2000 Zbl 0937.06009, MR 1786097 |
Reference:
|
[10] Esteva F., Godo L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms.Fuzzy Sets and Systems 124 (2001), 271–288 Zbl 0994.03017, MR 1860848 |
Reference:
|
[11] Fodor J. C.: On fuzzy implication operators.Fuzzy Sets and Systems 42 (1991), 293–300 Zbl 0736.03006, MR 1127976, 10.1016/0165-0114(91)90108-3 |
Reference:
|
[12] Fodor J. C.: Contrapositive symmetry of fuzzy implications.Fuzzy Sets and Systems 69 (1995), 141–156 Zbl 0845.03007, MR 1317882, 10.1016/0165-0114(94)00210-X |
Reference:
|
[13] Fodor J. C.: Smooth associative operations on finite ordinal scales.IEEE Trans. Fuzzy Systems 8 (2000), 791–795 10.1109/91.890343 |
Reference:
|
[14] Godo L., Sierra C.: A new approach to connective generation in the framework of expert systems using fuzzy logic.In: Proc. XVIIIth ISMVL, Palma de Mallorca, Spain 1988, pp. 157–162 |
Reference:
|
[15] Hájek P.: Mathematics of Fuzzy Logic.Kluwer, Dordrecht 1998 |
Reference:
|
[16] Hájek P.: Basic fuzzy logic and BL-algebras.Soft Computing 2 (1998), 124–128 10.1007/s005000050043 |
Reference:
|
[17] Jenei S.: New family of triangular norms via contrapositive symmetrization of residuated implications.Fuzzy Sets and Systems 110 (2000), 157–174 Zbl 0941.03059, MR 1747749 |
Reference:
|
[18] Mas M., Mayor, G., Torrens J.: $t$-operators and uninorms on a finite totally ordered set.Internat. J. Intelligent Systems (Special Issue: The Mathematics of Fuzzy Sets) 14 (1999), No. 9, 909–922 Zbl 0948.68173, MR 1691482, 10.1002/(SICI)1098-111X(199909)14:9<909::AID-INT4>3.0.CO;2-B |
Reference:
|
[19] Mas M., Monserrat, M., Torrens J.: On left and right uninorms on a finite chain.Fuzzy Sets and Systems, forthcoming Zbl 1045.03029, MR 2074199 |
Reference:
|
[20] Mas M., Monserrat, M., Torrens J.: Operadores de implicación en una cadena finita.In: Proc. Estylf-2002, León, Spain 2002, pp. 297–302 |
Reference:
|
[21] Mas M., Monserrat, M., Torrens J.: On some types of implications on a finite chain.In: Proc. Summer School on Aggregation Operators 2003 (AGOP’2003), Alcalá de Henares, Spain 2003, pp. 107–112 |
Reference:
|
[22] Mayor G., Torrens J.: On a class of operators for expert systems.Internat. J. Intelligent Systems 8 (1993), No. 7, 771–778 Zbl 0785.68087, 10.1002/int.4550080703 |
Reference:
|
[23] Pei D.: $R_0$ implication: characteristics and applications.Fuzzy Sets and Systems 131 (2002), 297–302 Zbl 1015.03034, MR 1939842 |
Reference:
|
[24] Trillas E., Campo, C. del, Cubillo S.: When QM-operators are implication functions and conditional fuzzy relations.Internat. J. Intelligent Systems 15 (2000), 647–655 Zbl 0953.03031, 10.1002/(SICI)1098-111X(200007)15:7<647::AID-INT5>3.0.CO;2-T |
. |