Previous |  Up |  Next

Article

Title: Residual implications and co-implications from idempotent uninorms (English)
Author: Ruiz, Daniel
Author: Torrens, Joan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 1
Year: 2004
Pages: [21]-38
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the study of implication (and co-implication) functions defined from idempotent uninorms. The expression of these implications, a list of their properties, as well as some particular cases are studied. It is also characterized when these implications satisfy some additional properties specially interesting in the framework of implication functions, like contrapositive symmetry and the exchange principle. (English)
Keyword: t-norm
Keyword: T-conorm
Keyword: idempotent uninorm
Keyword: aggregation
Keyword: implication function
MSC: 03B52
MSC: 06F05
MSC: 94D05
idZBL: Zbl 1249.94095
idMR: MR2068596
.
Date available: 2009-09-24T19:59:09Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135576
.
Reference: [1] Bustince H., Burillo, P., Soria F.: Automorphisms, negations and implication operators.Fuzzy Sets and Systems 134 (2003), 209–229 MR 1969102, 10.1016/S0165-0114(02)00214-2
Reference: [2] Czogala E., Drewniak J.: Associative monotonic operations in fuzzy set theory.Fuzzy Sets and Systems 12 (1984), 249–269 Zbl 0555.94027, MR 0740097, 10.1016/0165-0114(84)90072-1
Reference: [3] Baets B. De: An order-theoretic approach to solving sup-T equations.In: Fuzzy Set Theory and Advanced Mathematical Applications (D. Ruan, ed.), Kluwer, Dordrecht 1995, pp. 67–87 Zbl 0874.04005
Reference: [4] Baets B. De: Uninorms: the known classes.In: Proc. Third International FLINS Workshop on Fuzzy Logic and Intelligent Technologies for Nuclear Science and Industry. World Scientific, Antwerp 1998
Reference: [5] Baets B. De: Idempotent uninorms.European J. Oper. Res. 118 (1999), 631–642 Zbl 0933.03071, 10.1016/S0377-2217(98)00325-7
Reference: [6] Baets B. De: Generalized idempotence in fuzzy mathematical morphology.In: Fuzzy Techniques in Image Processing (E. E. Kerre and M. Nachtegael, eds.), Heidelberg 2000, pp. 58–75
Reference: [7] Baets B. De, Fodor J. C.: On the structure of uninorms and their residual implicators.In: Proc. 18th Linz Seminar on Fuzzy Set Theory, Linz, Austria 1997, pp. 81–87
Reference: [8] Baets B. De, Fodor J. C.: Residual operators of representable uninorms.In: Proc. Fifth European Congress on Intelligent Techniques and Soft Computing, Volume 1 (H.-J. Zimmermann, ed.), ELITE, Aachen 1997, pp. 52–56
Reference: [9] Baets B. De, Fodor J. C.: Residual operators of uninorms.Soft Computing 3 (1999), 89–100 10.1007/s005000050057
Reference: [10] Baets B. De, Kwasnikowska, N., Kerre E.: Fuzzy Morphology based on uninorms.In: Proc. Seventh IFSA World Congress, Prague 1997, pp. 215–220
Reference: [11] Fodor J. C., Yager R. R., Rybalov A.: Structure of Uninorms.Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 5 (1997), 411–427 Zbl 1232.03015, MR 1471619, 10.1142/S0218488597000312
Reference: [12] Fodor J. C.: Contrapositive symmetry on fuzzy implications.Fuzzy Sets and Systems 69 (1995), 141–156 MR 1317882, 10.1016/0165-0114(94)00210-X
Reference: [13] González M., Ruiz, D., Torrens J.: Algebraic properties of fuzzy morphological operators based on uninorms.In: Artificial Intelligence Research and Development (I. Aguiló, L. Valverde, and M. T. Escrig, eds.), IOS Press, Amsterdam 2003, pp. 27–38
Reference: [14] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer, London 2000 Zbl 1087.20041, MR 1790096
Reference: [15] Martín J., Mayor, G., Torrens J.: On locally internal monotonic operations.Fuzzy Sets and Systems 137 (2003), 27–42 Zbl 1022.03038, MR 1992696
Reference: [16] Mas M., Monserrat, M., Torrens J.: On left and right uninorms.Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 9 (2002), 491–507 Zbl 1045.03029, MR 1852342, 10.1142/S0218488501000909
Reference: [17] Nachtegael M., Kerre E. E.: Classical and fuzzy approaches towards mathematical morphology.In: Fuzzy Techniques in Image Processing (E. E. Kerre and M. Nachtegael, eds.), Heidelberg 2000, pp. 3–57
Reference: [18] Ruiz D., Torrens J.: Condición de modularidad para uninormas idempotentes.In: Proc. 11th Estylf, Leon, Spain 2002, pp. 177–182
Reference: [19] Ruiz D., Torrens J.: Distributive idempotent uninorms.Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 11 (2003), 413–428 Zbl 1074.03026, MR 2007849, 10.1142/S0218488503002168
Reference: [20] Ruiz D., Torrens J.: Residual implications and co–implications from idempotent uninorms.In: Proc. Summer School on Aggregation Operators 2003 (AGOP’2003), Alcalá de Henares, Spain 2003, pp. 149–154 MR 2068596
Reference: [21] Yager R. R., Rybalov A.: Uninorm aggregation operators.Fuzzy Sets and Systems 80 (1996), 111–120 Zbl 0871.04007, MR 1389951, 10.1016/0165-0114(95)00133-6
.

Files

Files Size Format View
Kybernetika_40-2004-1_3.pdf 1.566Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo