Previous |  Up |  Next

Article

Title: Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum (English)
Author: Díaz, Susana
Author: Montes, Susana
Author: De Baets, Bernard
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 1
Year: 2004
Pages: [71]-88
Summary lang: English
.
Category: math
.
Summary: Transitivity is a fundamental notion in preference modelling. In this work we study this property in the framework of additive fuzzy preference structures. In particular, we depart from a large preference relation that is transitive w.r.t. the nilpotent minimum t-norm and decompose it into an indifference and strict preference relation by means of generators based on t-norms, i. e. using a Frank t-norm as indifference generator. We identify the strongest type of transitivity these indifference and strict preference components show, both in general and for the important class of weakly complete large preference relations. (English)
Keyword: fuzzy relation
Keyword: indifference
Keyword: nilpotent minimum
Keyword: strict preference
Keyword: transitivity
MSC: 03E72
MSC: 04A72
MSC: 06F05
MSC: 68T37
MSC: 91B08
idZBL: Zbl 1249.91024
idMR: MR2068599
.
Date available: 2009-09-24T19:59:32Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135579
.
Reference: [1] Butnariu D., Klement E. P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions.Kluwer, Dordrecht 1993 Zbl 0804.90145, MR 2867321
Reference: [2] Dasgupta M., Deb R.: Transitivity and fuzzy preferences.Social Choice and Welfare 13 (1996), 305–318 Zbl 1075.91526, MR 1395364, 10.1007/BF00179234
Reference: [3] Dasgupta M., Deb R.: Factoring fuzzy transitivity.Fuzzy Sets and Systems 118 (2001), 489–502 Zbl 1017.91012, MR 1809396
Reference: [4] Baets B. De, Fodor J.: Twenty years of fuzzy preference structures (1978–1997).JORBEL 37 (1997), 61–82 Zbl 0926.91012, MR 1619319
Reference: [5] Baets B. De, Fodor J.: Generator triplets of additive fuzzy preference structures.In: Proc. Sixth Internat. Workshop on Relational Methods in Computer Science, Tilburg, The Netherlands, 2001, pp. 306–315
Reference: [6] Baets B. De, Walle, B. Van De, Kerre E.: Fuzzy preference structures without incomparability.Fuzzy Sets and Systems 76 (1995), 333–348 Zbl 0858.90001, MR 1365400, 10.1016/0165-0114(94)00379-9
Reference: [7] Díaz S., Baets, B. De, Montes S.: On the transitivity of fuzzy indifference relations.Fuzzy Sets and Systems – IFSA 2003 (T. Bilgiç, B. DeBaets, and O. Kayak, eds., Lecture Notes in Computer Science 2715.) Springer–Verlag, Berlin 2003, pp. 87–94 Zbl 1132.68768
Reference: [8] Díaz S., Baets, B. De, Montes S.: $T$-Ferrers relations versus $T$-biorders.Fuzzy Sets and Systems – IFSA 2003 (T. Bilgiç, B. DeBaets, and O. Kayak, eds., Lecture Notes in Computer Science 2715.) Springer–Verlag, Berlin 2003, pp. 269–276 Zbl 1132.68769
Reference: [9] Fodor J.: Contrapositive symmetry of fuzzy implications.Fuzzy Sets and Systems 69 (1995), 141–156 Zbl 0845.03007, MR 1317882, 10.1016/0165-0114(94)00210-X
Reference: [10] Fodor J., Roubens M.: Valued preference structures.European J. Oper. Res. 79 (1994), 277–286 Zbl 0812.90005, 10.1016/0377-2217(94)90358-1
Reference: [11] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer, Dordrecht 1994 Zbl 0827.90002
Reference: [12] Jenei S.: Structure of left-continuous triangular norms with strong induced negations.(I) Rotation construction. J. Appl. Non-Classical Logics 10 (2000), 83–92 Zbl 1050.03505, MR 1826844, 10.1080/11663081.2000.10510989
Reference: [13] Jenei S.: Structure of left-continuous triangular norms with strong induced negations.(II) Rotation-annihilation construction. J. Appl. Non-Classical Logics 11 (2001), 351–366 Zbl 1050.03505, MR 1916884, 10.3166/jancl.11.351-366
Reference: [14] Jenei S.: Structure of left-continuous triangular norms with strong induced negations.(III) Construction and decomposition. Fuzzy Sets and Systems 128 (2002), 197–208 Zbl 1050.03505, MR 1908426
Reference: [15] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [16] Perny P.: Modélisation, agrégation et expoitation des préférences floues dans une problématique de rangement.Ph.D. Thesis, Université Paris Dauphine, Paris 1992
Reference: [17] Perny P., Roy B.: The use of fuzzy outranking relations in preference modelling.Fuzzy Sets and Systems 49 (1992), 33–53 Zbl 0765.90003, MR 1177945, 10.1016/0165-0114(92)90108-G
Reference: [18] Roubens M., Vincke, Ph.: Preference Modelling.Springer–Verlag, Berlin 1985 Zbl 0612.92020, MR 0809182
Reference: [19] Walle B. Van De: Het bestaan en de karakterisatie van vaagpreferentiestrukturen.Ph.D. Thesis, Ghent University, 1996
.

Files

Files Size Format View
Kybernetika_40-2004-1_6.pdf 1.922Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo