Previous |  Up |  Next

Article

Title: Nonparametric recursive aggregation process (English)
Author: Tsiporkova, Elena
Author: Boeva, Veselka
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 1
Year: 2004
Pages: [51]-70
Summary lang: English
.
Category: math
.
Summary: In this work we introduce a nonparametric recursive aggregation process called Multilayer Aggregation (MLA). The name refers to the fact that at each step the results from the previous one are aggregated and thus, before the final result is derived, the initial values are subjected to several layers of aggregation. Most of the conventional aggregation operators, as for instance weighted mean, combine numerical values according to a vector of weights (parameters). Alternatively, the MLA operators apply recursively over the input values a vector of aggregation operators. Consequently, a sort of unsupervised self-tuning aggregation process is induced combining the individual values in a certain fashion determined by the choice of aggregation operators. (English)
Keyword: multilayer aggregation operators
Keyword: powermeans
Keyword: monotonicity
MSC: 03E72
MSC: 26A48
MSC: 26E60
MSC: 47A64
MSC: 47B99
MSC: 47N30
MSC: 62G99
MSC: 62P99
MSC: 68T10
idZBL: Zbl 1249.62004
idMR: MR2068598
.
Date available: 2009-09-24T19:59:24Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135578
.
Reference: [1] Fodor J. C., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer, Dordrecht 1994 Zbl 0827.90002
Reference: [2] Matkowski J.: Iterations of mean-type mappings and invariant means.Ann. Math. Sil. 13 (1999), 211–226 Zbl 0954.26015, MR 1735204
Reference: [3] Matkowski J.: On iteration semi-groups of mean-type mappings and invariant means.Aequationes Math. 64 (2002), 297–303 MR 1941960, 10.1007/PL00013194
Reference: [4] Mesiar R.: Aggregation operators: some classes and construction methods.Proceedings of IPMU’2000, Madrid, 2000, pp. 707–711
Reference: [5] Mizumoto M.: Pictorial representations of fuzzy connectives.Part 2: Cases of compensatory and self-dual operators. Fuzzy Sets and Systems 32 (1989), 245–252 Zbl 0709.03524, MR 1011380, 10.1016/0165-0114(89)90087-0
Reference: [6] Moser B., Tsiporkova, E., Klement K. P.: Convex combinations in terms of triangular norms: A characterization of idempotent, bisymmetrical and self-dual compensatory operators.Fuzzy Sets and Systems 104 (1999), 97–108 Zbl 0928.03063, MR 1685813
Reference: [7] Páles Z.: Nonconvex function and separation by power means.Mathematical Inequalities & Applications 3 (2000), 169–176 MR 1749294, 10.7153/mia-03-20
Reference: [8] Tsiporkova E., Boeva V.: Multilayer aggregation operators.In: Proc. Summer School on Aggregation Operators 2003 (AGOP’2003), Alcalá de Henares, Spain, pp. 165–170
Reference: [9] Turksen I. B.: Interval-valued fuzzy sets and ‘compensatory AND’.Fuzzy Sets and Systems 51 (1992), 295–307 MR 1192450, 10.1016/0165-0114(92)90020-5
Reference: [10] Yager R. R.: MAM and MOM opereators for aggregation.Inform. Sci. 69 (1993), 259–273 10.1016/0020-0255(93)90124-5
Reference: [11] Yager R. R.: Noncommutative self-identity aggregation.Fuzzy Sets and Systems 85 (1997), 73–82 Zbl 0903.04005, MR 1423474, 10.1016/0165-0114(95)00325-8
Reference: [12] Zimmermann H.-J., Zysno P.: Latent connectives in human decision making.Fuzzy Sets and Systems 4 (1980), 37–51 Zbl 0435.90009
.

Files

Files Size Format View
Kybernetika_40-2004-1_5.pdf 2.274Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo