Previous |  Up |  Next

Article

Title: Design of robust output affine quadratic controller (English)
Author: Veselý, Vojtech
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 2
Year: 2004
Pages: [221]-232
Summary lang: English
.
Category: math
.
Summary: The paper addresses the problem robust output feedback controller design with guaranteed cost and affine quadratic stability for linear continuous time affine systems. The proposed design method leads to a non-iterative LMI based algorithm. A numerical example is given to illustrate the design procedure. (English)
Keyword: robust control
Keyword: parameter dependent Lyapunov function
Keyword: affine quadratic stability
Keyword: LMI approach
MSC: 49N10
MSC: 93C05
MSC: 93D15
idZBL: Zbl 1249.93151
idMR: MR2069180
.
Date available: 2009-09-24T20:00:49Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135590
.
Reference: [1] Benton R. E., Jr., Smith D.: A non iterative LMI based algorithm for robust static output feedback stabilization.Internat. J. Control 72 (1999), 1322–1330 Zbl 0960.93048, MR 1712166, 10.1080/002071799220290
Reference: [2] Boyd S., Ghaoui L. El., Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory.SIAM 115 (1994), Philadelphia Zbl 0816.93004, MR 1284712
Reference: [3] Crusius C. A. R., Trofino A.: Sufficient LMI conditions for output feedback control problems.IEEE Trans. Automat. Control 44 (1999), 5, 1053–1057 Zbl 0956.93028, MR 1690555, 10.1109/9.763227
Reference: [4] Ghaoui L. El, Balakrishnan V.: Synthesis of fixed structure controllers via numerical optimization.In: Proc. 33rd Conference on Decision and Control, Lake Buena Vista, FL 1994, pp. 2678–2683
Reference: [5] Gahinet P., Apkarian, P., Chilali M.: Affine parameter dependent Lyapunov functions and real parametric uncertainty.IEEE Trans. Automat. Control 41 (1996), 436–442 Zbl 0854.93113, MR 1382994, 10.1109/9.486646
Reference: [6] Gahinet P., Nemirovski A., Laub A. J., Chilali M.: LMI Control Toolbox User’s Guide.The Mathworks Inc., Natick MA 1995
Reference: [7] Geromel J. C., Souza C. E. De, Skelton R. E.: Static output feedback controllers: stability and convexity.IEEE Trans. Automat. Control 43 (1998), 120–125 Zbl 0952.93106, MR 1604277, 10.1109/9.654912
Reference: [8] Goh K. C., Safonov M. G., Papavassilopoulos G. P.: Global optimization for the biaffine matrix inequality problem.J. Global Optim. 7 (1995), 365–380 Zbl 0844.90083, MR 1365801, 10.1007/BF01099648
Reference: [9] Gyurkovics E., Takacs T.: Stabilisation of discrete-time interconnected systems under control constraints.Proc. IEE Control Theory and Applications 147 (2000), 137–144
Reference: [10] Hejdiš J., Kozák, Š., Juráčková L.: Self-tuning controllers based on orthonormal functions.Kybernetika 36 (2000), 477–491
Reference: [11] Henrion D., Alzelier, D., Peaucelle D.: Positive polynomial matrices and improved robustness conditions.In: Proc. 15th Triennial World Congres, Barcelona 2002, CD
Reference: [12] Kose I. E., Jabbari F.: Robust control of linear systems with real parametric uncertainty.Automatica 35 (1999), 679–687 Zbl 0982.93033, MR 1827393, 10.1016/S0005-1098(98)00184-8
Reference: [13] A.Kozáková: Robust Decentralized control of complex systems in frequency domain.In: Preprints of 2nd IFAC Workshop on NTDCS, Elsevier Kidlington UK, 1999
Reference: [14] Kučera V., Souza C. E. De: A necessary and sufficient conditions for output feedback stabilizability.Automatica 31 (1995), 1357–1359 MR 1349414, 10.1016/0005-1098(95)00048-2
Reference: [15] Yu, Li, Chu, Jian: An LMI approach to guaranteed cost of linear uncertain time delay systems.Automatica 35 (1999), 1155–1159 MR 1831625, 10.1016/S0005-1098(99)00007-2
Reference: [16] Mehdi D., Hamid, M. Al, Perrin F.: Robustness and optimality of linear quadratic controller for uncertain systems.Automatica 32 (1996), 1081–1083 Zbl 0855.49024, MR 1405468, 10.1016/0005-1098(96)00037-4
Reference: [17] Oliveira M. C. De, Bernussou, J., Geromel J. C.: A new discrete-time robust stability condition.Systems Control Lett. 37 (1999), 261–265 Zbl 0948.93058, MR 1751256, 10.1016/S0167-6911(99)00035-3
Reference: [18] Pakshin P. V.: Robust decentralized control of systems of random structure.J. Computer and Systems Sciences 42 (2003), 200–204 Zbl 1110.93300, MR 2000651
Reference: [19] Park P., Moon Y. S., Kwon W. H.: A stabilizing output feedback linear quadratic control for pure input delayed systems.Internat. J. Control 72 (1999), 385–391 Zbl 0956.93053, MR 1674930, 10.1080/002071799221019
Reference: [20] Takahashi R. H. C., Ramos D. C. W., Peres P. L. D.: Robust control synthesis via a genetic algorithm and LMIS.In: Preprints 15th Triennial World Congress, Barcelona 2002, CD
Reference: [21] Tuan H. D., Apkarian P., Hosoe, S., Tuy H.: D.C. optimization approach to robust control: feasibility problems. Internat. J. Control 73 (2000), 89–104 Zbl 0998.93012, MR 1738361, 10.1080/002071700219803
Reference: [22] Veselý V.: Static output feedback controller design.Kybernetika 37 (2001), 205–221 MR 1839228
Reference: [23] Veselý V.: Robust output feedback controller design for linear parametric uncertain systems.J. Electrical Engineering 53 (2002), 117–125
Reference: [24] Xu S. J., Darouch M.: On the robustness of linear systems with nonlinear uncertain parameters.Automatica 34 (1998), 1005–1008 MR 1823000, 10.1016/S0005-1098(98)00040-5
Reference: [25] Cao, Yong Yan, Sun, You Xian: Static output feedback simultaneous stabilization: LMI approach.Internat. J. Control 70 (1998), 803–814 MR 1634668, 10.1080/002071798222145
.

Files

Files Size Format View
Kybernetika_40-2004-2_5.pdf 1.489Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo