Previous |  Up |  Next

Article

Title: An ILP model for a monotone graded classification problem (English)
Author: Vojtáš, Peter
Author: Horváth, Tomáš
Author: Krajči, Stanislav
Author: Lencses, Rastislav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 3
Year: 2004
Pages: [317]-332
Summary lang: English
.
Category: math
.
Summary: Motivation for this paper are classification problems in which data can not be clearly divided into positive and negative examples, especially data in which there is a monotone hierarchy (degree, preference) of more or less positive (negative) examples. We present a new formulation of a fuzzy inductive logic programming task in the framework of fuzzy logic in narrow sense. Our construction is based on a syntactical equivalence of fuzzy logic programs FLP and a restricted class of generalised annotated programs. The induction is achieved via multiple use of classical two valued induction on $\alpha $-cuts of fuzzy examples with monotonicity axioms in background knowledge, which is afterwards again glued together to a single annotated hypothesis. Correctness of our method (translation) is based on the correctness of FLP. The cover relation is based on fuzzy Datalog and fixpoint semantics for FLP. We present and discuss results of ILP systems GOLEM and ALEPH on illustrative examples. We comment on relations of our results to some statistical models and Bayesian logic programs. (English)
Keyword: graded classification
Keyword: ILP
Keyword: annotated programs
MSC: 03B50
MSC: 03B70
MSC: 68N17
MSC: 68T05
MSC: 68T37
idZBL: Zbl 1249.68265
idMR: MR2103932
.
Date available: 2009-09-24T20:01:42Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135598
.
Reference: [1] Andrejková G., Jirásek J.: Neural network topologies and evolutionary design.Neural Network World 6 (2001), 547–560
Reference: [3] Bouchon-Meunier B., Marsala, Ch.: Improvement of the interpretability of fuzzy rules constructed by means of fuzzy decision tree based systems.In: Abstracts of FSTA 2002, Liptovský Ján, Slovakia 2002
Reference: [5] Drobics M., Bodenhofer, U., Winiwarter W.: Interpretation of self-organizing maps with fuzzy rules.In: ICTAI 2000, IEEE
Reference: [6] Džeroski S., Lavrač N.: An introduction to inductive logic programming.In: Relational Data Mining (S. Džeroski and N. Lavrač, eds.) Springer–Verlag, Berlin 2001, pp. 48–73
Reference: [7] al L. Getoor et: Learning probabilistic relational models.In: Relational Data Mining (S. Džeroski and N. Lavrač, eds.), Springer–Verlag, Berlin 2001, pp. 307–335 Zbl 0989.68551
Reference: [8] Hájek P.: Metamathematics of Fuzzy Logic.Kluwer, Dordrecht 1999 Zbl 1007.03022, MR 1717480
Reference: [11] Jenčušová E., Jirásek J.: Formal methods of security protocols.Tatra Mt. Math. Publ. 25 (2002), 1–10
Reference: [12] Kersting K., Raedt L. De: Towards combining Inductive Logic Programming with Bayesian Networks.In: Proc. ILP 2001 (C. Rouveirol and M. Sebagh, eds., Lecture Notes in Artificial Intelligence 2157), Springer–Verlag, Berlin 2001, pp. 118–131 Zbl 1006.68518, MR 1906962
Reference: [13] Kersting K., Raedt L. De: Adaptive Bayesian Logic Programs.In: Proc. ILP 2001 (C. Rouveirol and M. Sebagh, eds., Lecture Notes in Artificial Intelligence 2157), Springer–Verlag, Berlin 2001, pp. 104–117 Zbl 1006.68504, MR 1906961
Reference: [14] Kifer M., Subrahmanian V. S.: Theory of generalized anotated logic programming and its applications.J. Logic Programming 12 (1992), 335–367 MR 1155547, 10.1016/0743-1066(92)90007-P
Reference: [15] Klose A., Nürnberger A., Nauck, D., Kruse R.: Data Mining with Neuro-Fuzzy Models.In: Data Mining and Computational Intelligence (A. Kandel, H. Bunke, and M. Last, eds.), Physica–Verlag, Heidelberg 2001, pp. 1–36
Reference: [16] Krajči S., Lencses, R., Vojtáš P.: A data model for annotated programs.In: ADBIS’02-Research Com. (Y. Manolopoulos and P. Návrat, eds.), Vydavatelstvo STU, Bratislava 2002, pp. 141–154
Reference: [17] Krajči S., Lencses, R., Vojtáš P.: A comparison of fuzzy and annotated logic programming.Fuzzy Sets and Systems 144 (2004), 173–192 Zbl 1065.68024, MR 2072454
Reference: [18] Lin C.-T., Lee C.-C.: Neural Fuzzy Systems.A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall, New York 1996
Reference: [20] Muggleton S.: Inductive logic programming.New Gen. Comp. 8 (1991), 295–318 Zbl 0712.68022, 10.1007/BF03037089
Reference: [21] Muggleton S.: Inverse entailment and Progol.New Gen. Comp. 13 (1995), 245–286 10.1007/BF03037227
Reference: [22] Nauck D., Klawonn, F., Kruse R.: Foundations of Neuro-Fuzzy Systems.Wiley, Chichester 1997
Reference: [23] Quinlan J. R.: Learning logical definitions from relations.Mach. Learning 5 (1990), 239–266 10.1007/BF00117105
Reference: [24] Quinlan J. R., Cameron-Jones R. M.: FOIL: A midterm report.In: Proc. 6th European Conference on Machine Learning (P. Brazdil, ed., Lecture Notes in Artificial Intelligence 667), Springer–Verlag, Berlin 1993, pp. 3–20
Reference: [25] Raedt L. De, Džeroski S.: First order jk-clausal theories are PAC-learnable.Artificial Intelligence 70 (1994), 375–392 Zbl 0938.68773, MR 1301617, 10.1016/0004-3702(94)90112-0
Reference: [26] al D. Shibata et: An induction algorithm based on fuzzy logic programming.In: Proc. PAKDD’99 (Ning Zhong and Lizhu Zhou, eds., Lecture Notes in Computer Science 1574), Springer–Verlag, Berlin 1999, pp. 268–273
Reference: [28] Vojtáš P.: Fuzzy logic programming.Fuzzy Sets and Systems 124 (2001), 361–370 Zbl 1015.68036, MR 1860856, 10.1016/S0165-0114(01)00106-3
Reference: [29] Železný F.: Learning functions from imperfect positive data.In: Proc. ILP 2001 (C. Rouveirol and M. Sebag, eds., Lecture Notes in Computer Science 2157), Springer–Verlag, Berlin 2001, pp. 248–259 Zbl 1006.68512
.

Files

Files Size Format View
Kybernetika_40-2004-3_5.pdf 2.148Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo