Previous |  Up |  Next

Article

Title: Building adaptive tests using Bayesian networks (English)
Author: Vomlel, Jiří
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 3
Year: 2004
Pages: [333]-348
Summary lang: English
.
Category: math
.
Summary: We propose a framework for building decision strategies using Bayesian network models and discuss its application to adaptive testing. Dynamic programming and $AO^{\star }$ algorithm are used to find optimal adaptive tests. The proposed $AO^{\star }$ algorithm is based on a new admissible heuristic function. (English)
Keyword: Bayesian networks
Keyword: adaptive testing
Keyword: heuristic search
MSC: 68T05
MSC: 68T20
MSC: 68T30
MSC: 68T37
idZBL: Zbl 1249.68174
idMR: MR2103934
.
Date available: 2009-09-24T20:01:50Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135599
.
Reference: [1] Almond R. G., Mislevy R. J.: Graphical models and computerized adaptive testing.Appl. Psychological Measurement 23 (1999), 3, 223–237 10.1177/01466219922031347
Reference: [2] Andreassen S., Jensen F. V., Andersen S. K., Falck B.: V.Kjærulff, M. Woldbye, A. R. Sørensen, A. Rosenfalck, and F. Jensen: MUNIN - An expert EMG assistant. In: Computer-Aided Electromyography and Expert Systems (J. E. Desmedt, ed.), Elsevier Science Publishers, Amsterdam 1989
Reference: [3] Ben-Bassat M.: Myopic policies in sequential classification.Trans. Comput. 27 (1978), 2, 170–174 MR 0521223, 10.1109/TC.1978.1675054
Reference: [4] Conati C., Gertner A. S., VanLehn, K., Druzdzel M. J.: On-Line Student Modeling for Coached Problem Solving Using Bayesian Networks.In: Proc. Sixth Internat. Conference on User Modeling (UM97) (A. Jameson, C. Paris, and C. Tasso, eds.), Chia Laguna, Sardinia, Italy, 1997
Reference: [5] Millán E., Pérez-de-la-Cruz J. L.: A Bayesian Diagnostic Algorithm for Student Modeling and its Evaluation.User Modeling and User Adapted Interaction 12 (2002), 2–3, 281–330 Zbl 1030.68781
Reference: [6] Būtėnas L., Brilingaitė A., Čivilis A., Yin, X., Zokaitė N.: Computerized Adaptive Test Based on Bayesian Network for Basic Operations with Fractions.Student Project Report, Aalborg University, 2001, http://www.cs.auc.dk/library
Reference: [7] Greiner R., Grove A. J., Roth D.: Learning cost-sensitive active classifiers.Artificial Intelligence 130 (2002), 2, 137–174 MR 1930605, 10.1016/S0004-3702(02)00209-6
Reference: [8] Heckerman D., Horwitz, E., Nathwani B.: Towards normative expert systems: Part I, the Pathfinder project.Methods Inform. Medicine 31 (1992), 90–105
Reference: [9] Explorer, Hugin, 2002, ver. 6.0. Comput. Software, http//: www.hugin.com
Reference: [10] Jensen F. V.: Bayesian Networks and Decision Graphs.Springer–Verlag, New York – Berlin – Heidelberg 2001 MR 1876880
Reference: [11] Jensen F. V., Lauritzen S. L., Olesen K. G.: Bayesian updating in recursive graphical models by local computation.Comput. Statist. Quarterly 4 (1990), 269–282 MR 1073446
Reference: [12] Lauritzen S. L.: The EM-algorithm for graphical association models with missing data.Comput. Statist. Data Anal. 1 (1995), 191–201 Zbl 0875.62237, 10.1016/0167-9473(93)E0056-A
Reference: [13] Lauritzen S. L., Spiegelhalter D. J.: Local computations with probabilities on graphical structures and their application to expert systems (with discussion).J. Roy. Statist. Soc. Ser. B 50 (1988), 157–224 MR 0964177
Reference: [14] Lauritzen S. L.: Some Modern Applications of Graphical Models.In: Highly Structured Stochastic Systems (P. J. Green, N. L. Hjort, and S. Richardson, eds.), Oxford University Press, Oxford 2002 MR 2082405
Reference: [15] Lord F. M.: A Theory of Test Scores.Psychometrica Monograph No. 7 (1952)
Reference: [16] Pattipati K. R., Alexandridis M. G.: Application of heuristic search and information theory to sequential fault diagnosis.IEEE Trans. Systems Man Cybernet. 20 (1990), 4, 872–887 Zbl 0709.68006, 10.1109/21.105086
Reference: [17] Pearl J.: Reverend Bayes on inference engines: a distributed hierarchical approach.In: Proc. AAAI National Conference on AI, Pittsburgh 1982, pp. 133–136
Reference: [18] Pearl J.: Heuristics – Intelligent Search Strategies for Computer Problem Solving.Addison-Wesley, Reading, MA 1984
Reference: [19] Pearl J.: Fusion, propagation and structuring in belief networks.Artificial Intelligence 29 (1986), 3, 241–288 Zbl 0624.68081, MR 0858200, 10.1016/0004-3702(86)90072-X
Reference: [20] Rasch G.: Probabilistic Models for Some Intelligence and Attainment Tests.Technical Report, Danish Institute for Educational Research, Copenhagen 1960
Reference: [21] Spiegelhalter D. J., Knill-Jones R. P.: Statistical and knowledge-based approaches to clinical decision-support systems.J. Roy. Statist. Soc. Ser. A 147 (1984), 35–77 Zbl 0559.62089, 10.2307/2981737
Reference: [22] Spirtes P., Glymour, C., Scheines R.: Causation, Prediction, and Search (Lecture Notes in Statistics 81).Springer–Verlag, Berlin 1993 MR 1227558, 10.1007/978-1-4612-2748-9_7
Reference: [23] Linden W. J. Van Der, Glas C. A. W.: Computerized Adaptive Testing: Theory and Practice.Kluwer, Dordrecht 2000
Reference: [24] Vomlel J.: Bayesian networks in educational testing.Internat. J. Uncertainty, Fuzziness and Knowledge Based Systems 12 (2004), Supplementary Issue 1, 83–100 Zbl 1101.68847, 10.1142/S021848850400259X
Reference: [25] Vomlelová M., Vomlel J.: Troubleshooting: NP-hardness and solution methods.Soft Comput. J. 7 (2003), 5, 357–368 Zbl 1088.68804, 10.1007/s00500-002-0224-4
Reference: [26] Wainer H., Thissen, D., Mislevy R. J.: Computerized Adaptive Testing: A Primer.Second edition. Mahwah, Lawrence Erlbaum Associates, N. J. 2000
.

Files

Files Size Format View
Kybernetika_40-2004-3_6.pdf 1.891Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo