Previous |  Up |  Next

Article

Title: A modified standard embedding for linear complementarity problems (English)
Author: Allonso, Sira Allende
Author: Guddat, Jürgen
Author: Nowack, Dieter
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 5
Year: 2004
Pages: [551]-570
Summary lang: English
.
Category: math
.
Summary: We propose a modified standard embedding for solving the linear complementarity problem (LCP). This embedding is a special one-parametric optimization problem $P(t), t \in [0,1]$. Under the conditions (A3) (the Mangasarian–Fromovitz Constraint Qualification is satisfied for the feasible set $M(t)$ depending on the parameter $t$), (A4) ($P(t)$ is Jongen–Jonker– Twilt regular) and two technical assumptions, (A1) and (A2), there exists a path in the set of stationary points connecting the chosen starting point for $P(0)$ with a certain point for $P(1)$ and this point is a solution for the (LCP). This path may include types of singularities, namely points of Type 2 and Type 3 in the class of Jongen–Jonker–Twilt for $t\in [0,1)$. We can follow this path by using pathfollowing procedures (included in the program package PAFO). In case that the condition (A3) is not satisfied, also points of Type 4 and 5 may appear. The assumption (A4) will be justified by a perturbation theorem. Illustrative examples are presented. (English)
Keyword: linear complementarity problem
Keyword: standard embedding
Keyword: Jongen– Jonker–Twilt regularity
Keyword: Mangasarian–Fromovitz constraint qualification
Keyword: pathfollowing methods
MSC: 68Q25
MSC: 90C31
MSC: 90C33
MSC: 90C51
idZBL: Zbl 1249.90273
idMR: MR2120996
.
Date available: 2009-09-24T20:03:45Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135616
.
Reference: [1] Allonso S. Allende, Guddat, J., Nowack D.: A modified penalty embedding for linear complementarity problems.Investigación Oper. 23 (2002), 1, 37–54 MR 1932562
Reference: [2] Allgower E., Georg K.: Numerical Continuation Methods.An Introduction. Springer–Verlag, Berlin 1990 Zbl 1036.65047, MR 1059455
Reference: [3] Bank B., Guddat J., Klatte D., Kummer, B., Tammer K.: Non-Linear Parametric Optimization.Akademie–Verlag Berlin, 1982 Zbl 0502.49002
Reference: [4] Billups S. C.: A Homotopy-based algorithm for mixed complementarity problems.SIAM J. Optim. 12 (2002), 583–605 Zbl 1056.90132, MR 1884907, 10.1137/S1052623498337431
Reference: [5] Billups S. C., Watson L. T.: A probability – one homotopie algorithm for nonsmooth equations and mixed complementarity problems.SIAM J. Optim. 12 (2002), 606–626 MR 1884908, 10.1137/S105262340037758X
Reference: [7] Chen, Ch., Mangasarian O. L.: Smoothing methods for convex inequalities and linear complementarity problems.Math. Programming 71 (1995), 51–69 Zbl 0855.90124, MR 1362957, 10.1007/BF01592244
Reference: [8] Pang R. W. Cottle J.-S., Stone R. E.: The Linear Complementarity Problem.Academic Press, Boston, MA, 1992 MR 1150683
Reference: [9] Facchinei F., Pang J.-P.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol.I and Vol. II. Springer Series in Operations Research, 2003 Zbl 1062.90002, MR 1955648
Reference: [10] Ferris M. C., Munson, T., Ralph D.: A homotopy method for mixed complementarity problems based on the PATH–solver.In: Numerical Analysis 1999 (D. F. Griffiths and G. A. Watson, eds.), Research Notes in Mathematics, Chapman and Hall, London 2000, pp. 143–167 MR 1751116
Reference: [11] Ferris M. C., Pang J.-S.: Engeneering and economic application of complementarity problems.SIAM Rev. 39 (1997), 669–713 MR 1491052, 10.1137/S0036144595285963
Reference: [12] Fischer A.: A Newton–type method for positive–semidefinite linear complementarity problems.J. Optim. Theory Appl. 86 (1995), 3, 585–608 Zbl 0839.90121, MR 1348771, 10.1007/BF02192160
Reference: [13] Fischer A., Kanzow, CH.: On finite termination of an iterative method for linear complementarity problems.Math. Programming 74 (1996), xxx–xxx Zbl 0855.90125, MR 1407689, 10.1007/BF02592200
Reference: [14] Gfrerer H., Guddat J., Wacker,, Hj., Zulehner W.: Pathfollowing methods for Kuhn–Tucker curves by an active index set strategy.In: Systems and optimization (A. Bagchi and T. Th. Jongen, eds.), (Lecture Notes in Control and Information Sciences 66), Springer–Verlag Berlin, Heidelberg – New York 1985, pp. 111–131 MR 0878586
Reference: [15] Gollmer R., Kausmann U., Nowack D., Wendler, K., Estrada J. Bacallao: Computerprogramm PAFO.Humboldt-Universität Berlin, Institut für Mathematik xxxx
Reference: [16] Gomez W., Guddat J., Jongen H. Th., Rückmann J.-J., Solano C.: Curvas criticas y saltos en optimizacion nolineal.Electronic Publication: The Electronic Library of Mathematics, http://www.emis.de/monographs/curvas/index.html
Reference: [17] Guddat J., Guerra, F., Jongen H. Th.: Parametric Optimization: Singularities, Pathfollowing and Jumps.BG Teubner, Stuttgart and John Wiley, Chichester 1990 Zbl 0718.90056, MR 1085483
Reference: [18] Jongen H. Th., Jonker, P., Twilt F.: Critical Sets in Parametric Optimization.Math. Programming 34 (1986), 333–353 Zbl 0599.90114, MR 0839608, 10.1007/BF01582234
Reference: [19] Jongen H. Th., Jonker, P., Twilt F.: Nonlinear Optimization in Finite Dimension: Morse Theory, Chebysher Approximation, Transversality, Flows, Parametric Aspects.Kluwer, 2000 MR 1794354
Reference: [20] Kanzow, Ch.: Some boninterior continuation methods for linear complementarity problems.SIAM J. Appl. Anal. 17 (1996), 851–868 MR 1410705, 10.1137/S0895479894273134
Reference: [21] Kojima M., Megiddo N., Noma, T., Yoshishe A.: A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems.Springer, Berlin 1991
Reference: [22] Nožička F.: Über eine Klasse von linearen einparametrischen Optimierungsproblemen.Math. Operationsforschung Statist. 3, (1972), 159–194 Zbl 0247.90037, MR 0334929, 10.1080/02331887208801074
Reference: [23] Nožička F., Guddat J., Hollatz, H., Bank B.: Theorie der linearen parametrischen Optimierung.Akademic–Verlag, Berlin 1974 Zbl 0284.90053
Reference: [24] Reinholdt W. C.: Numerical Analysis of Parametric Nonlinear Equations.John Wiley, New York 1986
Reference: [25] Rückmann J.-J., Tammer K.: On linear-quadratic perturbations in one-parametric non-linear optimization.Systems Sci. 18 (1992), 1, 37–48 MR 1222836
Reference: [26] Schmid R.: Eine modifizierte Standardeinbettung zur Behandlung von Gleichungs- und Ungleichungsrestriktionen.Diplomarbeit, Humboldt-Universitiät zu Berlin, 2000
Reference: [27] Sellami H., Robinson S. M.: Implementation of a continuation method for normal maps.Math. Programming 76 (1976), 563–578 MR 1433971, 10.1007/BF02614398
Reference: [28] Stoer J., Wechs H.: Infeasible-interior-point paths for sufficient linear complementarity problems and their analyticity.Math. Programming 83 (1998), 407–423 Zbl 0922.90136, MR 1650309, 10.1007/BF02680568
Reference: [29] Stoer J., Wechs, M., Mizuni S.: High order infeasible-interior-point-method for sufficient linear complementarity problems.Math. Oper. Res. 23 (1998), 832–862 MR 1662418, 10.1287/moor.23.4.832
Reference: [30] (ed.), Hj. Wacker: Continuation Methods.Academic Press, New York 1978 Zbl 0465.65029, MR 0483273
Reference: [31] Watson T.: Solving the nonlinear complementarity problem by a homotopy method.SIAM J. Control Appl. 17 (1979), 36–46 Zbl 0407.90083, MR 0516854, 10.1137/0317004
Reference: [32] Xu S., Burke J. V.: A polynomial time interior-point path-following algorithm for LCP based on Chen–Harker–Kanzow smoothing techniques.Math. Programming 86 (1999) Zbl 0978.90097, MR 1712475
.

Files

Files Size Format View
Kybernetika_40-2004-5_3.pdf 2.662Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo